Crystallography companion agent for high-throughput materials discovery

被引:58
作者
Maffettone, Phillip M. [1 ,2 ]
Banko, Lars [3 ]
Cui, Peng [2 ]
Lysogorskiy, Yury [4 ]
Little, Marc A. [2 ]
Olds, Daniel [1 ]
Ludwig, Alfred [3 ]
Cooper, Andrew, I [2 ]
机构
[1] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA
[2] Univ Liverpool, Dept Chem & Mat Innovat Factory, Liverpool, Merseyside, England
[3] Ruhr Univ Bochum, Fac Mech Engn, Inst Mat, Bochum, Germany
[4] Ruhr Univ, Interdisciplinary Ctr Adv Mat Simulat ICAMS, Bochum, Germany
来源
NATURE COMPUTATIONAL SCIENCE | 2021年 / 1卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
MOLECULES; SYSTEM;
D O I
10.1038/s43588-021-00059-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The discovery of new structural and functional materials is driven by phase identification, often using X-ray diffraction (XRD). Automation has accelerated the rate of XRD measurements, greatly outpacing XRD analysis techniques that remain manual, time-consuming, error-prone and impossible to scale. With the advent of autonomous robotic scientists or self-driving laboratories, contemporary techniques prohibit the integration of XRD. Here, we describe a computer program for the autonomous characterization of XRD data, driven by artificial intelligence (AI), for the discovery of new materials. Starting from structural databases, we train an ensemble model using a physically accurate synthetic dataset, which outputs probabilistic classifications-rather than absolutes-to overcome the overconfidence in traditional neural networks. This AI agent behaves as a companion to the researcher, improving accuracy and offering substantial time savings. It is demonstrated on a diverse set of organic and inorganic materials characterization challenges. This method is directly applicable to inverse design approaches and robotic discovery systems, and can be immediately considered for other forms of characterization such as spectroscopy and the pair distribution function.
引用
收藏
页码:290 / 297
页数:8
相关论文
共 52 条
[1]   Decoding crystallography from high-resolution electron imaging and diffraction datasets with deep learning [J].
Aguiar, J. A. ;
Gong, M. L. ;
Unocic, R. R. ;
Tasdizen, T. ;
Miller, B. D. .
SCIENCE ADVANCES, 2019, 5 (10)
[2]   Reconfigurable system for automated optimization of diverse chemical reactions [J].
Bedard, Anne-Catherine ;
Adamo, Andrea ;
Aroh, Kosi C. ;
Russell, M. Grace ;
Bedermann, Aaron A. ;
Torosian, Jeremy ;
Yue, Brian ;
Jensen, Klavs F. ;
Jamison, Timothy F. .
SCIENCE, 2018, 361 (6408) :1220-+
[3]  
Blundell C, 2015, PR MACH LEARN RES, V37, P1613
[4]   Composition-Structure-Function Diagrams of Ti-Ni-Au Thin Film Shape Memory Alloys [J].
Buenconsejo, Pio John S. ;
Ludwig, Alfred .
ACS COMBINATORIAL SCIENCE, 2014, 16 (12) :678-685
[5]   A mobile robotic chemist [J].
Burger, Benjamin ;
Maffettone, Phillip M. ;
Gusev, Vladimir V. ;
Aitchison, Catherine M. ;
Bai, Yang ;
Wang, Xiaoyan ;
Li, Xiaobo ;
Alston, Ben M. ;
Li, Buyi ;
Clowes, Rob ;
Rankin, Nicola ;
Harris, Brandon ;
Sprick, Reiner Sebastian ;
Cooper, Andrew I. .
NATURE, 2020, 583 (7815) :237-+
[6]  
Chen D, 2020, PR MACH LEARN RES, V119
[7]   Accelerated discovery of two crystal structure types in a complex inorganic phase field [J].
Collins, C. ;
Dyer, M. S. ;
Pitcher, M. J. ;
Whitehead, G. F. S. ;
Zanella, M. ;
Mandal, P. ;
Claridge, J. B. ;
Darling, G. R. ;
Rosseinsky, M. J. .
NATURE, 2017, 546 (7657) :280-+
[8]   An Expandable Hydrogen-Bonded Organic Framework Characterized by Three-Dimensional Electron Diffraction [J].
Cui, Peng ;
Grape, Erik Svensson ;
Spackman, Peter R. ;
Wu, Yue ;
Clowes, Rob ;
Day, Graeme M. ;
Inge, A. Ken ;
Little, Marc A. ;
Cooper, Andrew, I .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (29) :12743-12750
[9]   Mining predicted crystal structure landscapes with high throughput crystallisation: old molecules, new insights [J].
Cui, Peng ;
McMahon, David P. ;
Spackman, Peter R. ;
Alston, Ben M. ;
Little, Marc A. ;
Day, Graeme M. ;
Cooper, Andrew, I .
CHEMICAL SCIENCE, 2019, 10 (43) :9988-9997
[10]   High-Throughput Structural and Functional Characterization of the Thin Film Materials System Ni-Co-Al [J].
Decker, Peer ;
Naujoks, Dennis ;
Langenkaemper, Dennis ;
Somsen, Christoph ;
Ludwig, Alfred .
ACS COMBINATORIAL SCIENCE, 2017, 19 (10) :618-624