Stability of standing waves for nonlinear Schrodinger equations with inhomogeneous nonlinearities

被引:45
作者
De Bouard, A [1 ]
Fukuizumi, R
机构
[1] Univ Paris 11, Math Lab, F-91405 Orsay, France
[2] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
来源
ANNALES HENRI POINCARE | 2005年 / 6卷 / 06期
关键词
D O I
10.1007/s00023-005-0236-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The effect of inhomogeneity of nonlinear medium is discussed concerning the stability of standing waves e(i omega t)phi(omega)(x) for a nonlinear Schrodinger equation with an inhomogeneous nonlinearity V (x)| u|(p-1)u, where V (x) is proportional to the electron density. Here, omega > 0 and phi(omega)(x) is a ground state of the stationary problem. When V ( x) behaves like | x|(-b) at infinity, where 0 < b < 2, we show that e(i omega t)phi(omega)(x) is stable for p < 1+(4-2b)/n and sufficiently small omega > 0. The main point of this paper is to analyze the linearized operator at standing wave solution for the case of V (x) = | x|(-b). Then, this analysis yields a stability result for the case of more general, inhomogeneous V (x) by a certain perturbation method.
引用
收藏
页码:1157 / 1177
页数:21
相关论文
共 33 条
[1]  
Akhmediev N. N., 1982, Soviet Physics - JETP, V56, P299
[2]   MOLECULAR MECHANICS WITH AN ARRAY PROCESSOR [J].
BERENS, PH ;
WILSON, KR .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (03) :313-332
[3]  
BERESTYCKI H, 1981, CR HEBD ACAD SCI, V293, P48
[4]   Soliton stability versus collapse [J].
Bergé, L .
PHYSICAL REVIEW E, 2000, 62 (03) :R3071-R3074
[5]   ORBITAL STABILITY OF STANDING WAVES FOR SOME NON-LINEAR SCHRODING EQUATIONS [J].
CAZENAVE, T ;
LIONS, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (04) :549-561
[6]  
Cazenave T., 2003, Semilinear Schrodinger equations, V10
[7]   Purely nonlinear instability of standing waves with minimal energy [J].
Comech, A ;
Pelinovsky, D .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2003, 56 (11) :1565-1607
[8]   NONLINEAR BOUND-STATES OUTSIDE AN INSULATED SPHERE [J].
ESTEBAN, MJ ;
STRAUSS, WA .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1994, 19 (1-2) :177-197
[9]   Stability of solitary waves for nonlinear Schrodinger equations with inhomogeneous nonlinearities [J].
Fibich, G ;
Wang, XP .
PHYSICA D-NONLINEAR PHENOMENA, 2003, 175 (1-2) :96-108
[10]  
Fukuizumi R., 2003, Di . Integral Equ, V16, P111