Compact hypersurfaces in a unit sphere

被引:9
作者
Cheng, QM [1 ]
Shu, SC
Suh, YJ
机构
[1] Saga Univ, Fac Sci & Engn, Dept Math, Saga 8408502, Japan
[2] Weinan Teachers Coll, Dept Math, Weinan 714000, Shaanxi, Peoples R China
[3] Kyungpook Natl Univ, Dept Math, Taejon 702701, South Korea
关键词
D O I
10.1017/S0308210500004303
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study curvature structures of compact hypersurfaces in the unit sphere Sn+1 (1) with two distinct principal curvatures. First of all, we prove that the Riemannian product S-1(root 1-c(2)) x Sn-1(c) is the only compact hypersurface in Sn+1 (1) with two distinct principal curvatures, one of which is simple and satisfies r > 1 - 2/n, r not equal n - 2/n -1 and S >= (n - 1) n(r - 1) + 2/n - 2 + n - 2/n(r - 1) + 2, where n(n - 1)r is the scalar curvature of hypersurfaces and c(2) = (n - 2)/nr. This generalized the result of Cheng, where the scalar curvature is constant is assumed. Secondly, we prove that the Riemannian product S-1(root 1-c(2)) x Sn-1 (c) is the only compact hypersurface with non-zero mean curvature in Sn+1 (1) with two distinct principal curvatures, one of which is simple and satisfies r > 1 - 2/n and S <= (n - 1) n(r - 1) + 2/n - 2 + n - 2/n(r - 1) + 2. This gives a partial answer for the problem proposed by Cheng.
引用
收藏
页码:1129 / 1137
页数:9
相关论文
共 12 条
[1]  
Asperti A., 2001, KODAI MATH J, V24, P313
[2]   Hypersurfaces of the Euclidean sphere with nonnegative Ricci curvature [J].
Barbosa, JN ;
Brasil, A ;
Costa, EA ;
Lázaro, IC .
ARCHIV DER MATHEMATIK, 2003, 81 (03) :335-341
[3]   A characterization of the Clifford torus [J].
Cheng, QM ;
Ishikawa, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (03) :819-828
[4]   Compact hypersurfaces in a unit sphere with infinite fundamental group [J].
Cheng, QM .
PACIFIC JOURNAL OF MATHEMATICS, 2003, 212 (01) :49-56
[5]   Hypersurfaces in a unit sphere Sn+1(1) with constant scalar curvature [J].
Cheng, QM .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 64 :755-768
[6]   The rigidity of Clifford torus S-1(root 1/n)xS(n-1)(root n-1/n) [J].
Cheng, QM .
COMMENTARII MATHEMATICI HELVETICI, 1996, 71 (01) :60-69
[7]  
Chern SS, 1970, FUNCTIONAL ANAL RELA, P59, DOI [10.1007/978-3-642-48272-4_2, DOI 10.1007/978-3-642-25588-5_5, DOI 10.1007/978-3-642-48272-4_2]
[8]   COMPACT CONFORMALLY FLAT HYPERSURFACES [J].
DOCARMO, M ;
DAJCZER, M ;
MERCURI, F .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 288 (01) :189-203
[9]   A pinching theorem for minimal hypersurfaces in a sphere [J].
Hasanis, T ;
Vlachos, T .
ARCHIV DER MATHEMATIK, 2000, 75 (06) :469-471
[10]   LOCAL RIGIDITY THEOREMS FOR MINIMAL HYPERSURFACES [J].
LAWSON, HB .
ANNALS OF MATHEMATICS, 1969, 89 (01) :187-&