Closed-Loop Decoder Adaptation on Intermediate Time-Scales Facilitates Rapid BMI Performance Improvements Independent of Decoder Initialization Conditions

被引:115
作者
Orsborn, Amy L. [1 ]
Dangi, Siddharth [2 ]
Moorman, Helene G. [3 ]
Carmena, Jose M. [1 ,2 ,3 ]
机构
[1] Univ Calif Berkeley, Univ Calif Berkeley Univ Calif San Francisco Grad, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
Adaptive control; brain-machine interfaces (BMIs); closed loop systems; motor cortex; CORTICAL CONTROL; NEURAL-CONTROL; ARM; HUMANS;
D O I
10.1109/TNSRE.2012.2185066
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Closed-loop decoder adaptation (CLDA) shows great promise to improve closed-loop brain-machine interface (BMI) performance. Developing adaptation algorithms capable of rapidly improving performance, independent of initial performance, may be crucial for clinical applications where patients have limited movement and sensory abilities due to motor deficits. Given the subject-decoder interactions inherent in closed-loop BMIs, the decoder adaptation time-scale may be of particular importance when initial performance is limited. Here, we present SmoothBatch, a CLDA algorithm which updates decoder parameters on a 1-2 min time-scale using an exponentially weighted sliding average. The algorithm was experimentally tested with one nonhuman primate performing a center-out reaching BMI task. SmoothBatch was seeded four ways with varying offline decoding power: 1) visual observation of a cursor (n = 20), 2) ipsilateral arm movements (n = 8), 3) baseline neural activity (n = 17), and 4) arbitrary weights (n= 11). SmoothBatch rapidly improved performance regardless of seeding, with performance improvements from 0.018 +/- 0.133 successes/min to >8 successes/min within 13.1 +/- 5.5 min (n = 56). After decoder adaptation ceased, the subject maintained high performance. Moreover, performance improvements were paralleled by SmoothBatch convergence, suggesting that CLDA involves a co-adaptation process between the subject and the decoder.
引用
收藏
页码:468 / 477
页数:10
相关论文
共 37 条
[1]  
[Anonymous], FRONT NEUR COMP SYST
[2]   Neurophysiological predictor of SMR-based BCI performance [J].
Blankertz, Benjamin ;
Sannelli, Claudia ;
Haider, Sebastian ;
Hammer, Eva M. ;
Kuebler, Andrea ;
Mueller, Klaus-Robert ;
Curio, Gabriel ;
Dickhaus, Thorsten .
NEUROIMAGE, 2010, 51 (04) :1303-1309
[3]   Learning to control a brain-machine interface for reaching and grasping by primates [J].
Carmena, JM ;
Lebedev, MA ;
Crist, RE ;
O'Doherty, JE ;
Santucci, DM ;
Dimitrov, DF ;
Patil, PG ;
Henriquez, CS ;
Nicolelis, MAL .
PLOS BIOLOGY, 2003, 1 (02) :193-208
[4]   Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex [J].
Chapin, JK ;
Moxon, KA ;
Markowitz, RS ;
Nicolelis, MAL .
NATURE NEUROSCIENCE, 1999, 2 (07) :664-670
[5]  
Dangi S, 2011, I IEEE EMBS C NEUR E, P609, DOI 10.1109/NER.2011.5910622
[6]   Naive coadaptive cortical control [J].
Gage, Gregory J. ;
Ludwig, Kip A. ;
Otto, Kevin J. ;
Ionides, Edward L. ;
Kipke, Daryl R. .
JOURNAL OF NEURAL ENGINEERING, 2005, 2 (02) :52-63
[7]   Neural Correlates of Skill Acquisition with a Cortical Brain-Machine Interface [J].
Ganguly, Karunesh ;
Carmena, Jose M. .
JOURNAL OF MOTOR BEHAVIOR, 2010, 42 (06) :355-360
[8]   Cortical Representation of Ipsilateral Arm Movements in Monkey and Man [J].
Ganguly, Karunesh ;
Secundo, Lavi ;
Ranade, Gireeja ;
Orsborn, Amy ;
Chang, Edward F. ;
Dimitrov, Dragan F. ;
Wallis, Jonathan D. ;
Barbaro, Nicholas M. ;
Knight, Robert T. ;
Carmena, Jose M. .
JOURNAL OF NEUROSCIENCE, 2009, 29 (41) :12948-12956
[9]   Emergence of a Stable Cortical Map for Neuroprosthetic Control [J].
Ganguly, Karunesh ;
Carmena, Jose M. .
PLOS BIOLOGY, 2009, 7 (07)
[10]   NEURONAL POPULATION CODING OF MOVEMENT DIRECTION [J].
GEORGOPOULOS, AP ;
SCHWARTZ, AB ;
KETTNER, RE .
SCIENCE, 1986, 233 (4771) :1416-1419