Geometric inequalities on Heisenberg groups

被引:20
作者
Balogh, Zoltan M. [1 ]
Kristaly, Alexandru [2 ,3 ]
Sipos, Kinga [1 ]
机构
[1] Univ Bern, Math Inst, Sidlerstr 5, CH-3012 Bern, Switzerland
[2] Babes Bolyai Univ, Dept Econ, Str Teodor Mihali 58-60, Cluj Napoca 400591, Romania
[3] Obuda Univ, Inst Appl Math, Becsi Ut 96, H-1034 Budapest, Hungary
基金
瑞士国家科学基金会;
关键词
METRIC-MEASURE-SPACES; BRUNN-MINKOWSKI; ISOPERIMETRIC INEQUALITY; SOBOLEV INEQUALITIES; MASS-TRANSPORTATION; RICCI CURVATURE; SHARP SOBOLEV; MANIFOLDS; BRASCAMP;
D O I
10.1007/s00526-018-1320-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish geometric inequalities in the sub-Riemannian setting of the Heisenberg group H-n. Our results include a natural sub-Riemannian version of the celebrated curvature-dimension condition of Lott-Villani and Sturm and also a geodesic version of the Borell-Brascamp-Lieb inequality akin to the one obtained by Cordero-Erausquin, McCann and Schmuckenschlager. The latter statement implies sub-Riemannian versions of the geodesic Prekopa-Leindler and Brunn-Minkowski inequalities. The proofs are based on optimal mass transportation and Riemannian approximation of Hn developed by Ambrosio and Rigot. These results refute a general point of view, according to which no geometric inequalities can be derived by optimal mass transportation on singular spaces.
引用
收藏
页数:41
相关论文
共 41 条
[1]   Generalized Ricci curvature bounds for three dimensional contact subriemannian manifolds [J].
Agrachev, Andrei ;
Lee, Paul W. Y. .
MATHEMATISCHE ANNALEN, 2014, 360 (1-2) :209-253
[2]   Optimal mass transportation in the Heisenberg group [J].
Ambrosio, L ;
Rigot, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 208 (02) :261-301
[3]   On Borell-Brascamp-Lieb Inequalities on Metric Measure Spaces [J].
Bacher, Kathrin .
POTENTIAL ANALYSIS, 2010, 33 (01) :1-15
[4]  
Balogh Z. M., 2017, ARXIV170108831, P1
[5]   Geodesic interpolation inequalities on Heisenberg groups [J].
Balogh, Zoltan M. ;
Kristaly, Alexandru ;
Sipos, Kinga .
COMPTES RENDUS MATHEMATIQUE, 2016, 354 (09) :916-919
[6]  
Barilari D., 2017, ARXIV170505380, P1
[7]   A sub-Riemannian curvature-dimension inequality, volume doubling property and the Poincare inequality [J].
Baudoin, Fabrice ;
Bonnefont, Michel ;
Garofalo, Nicola .
MATHEMATISCHE ANNALEN, 2014, 358 (3-4) :833-860
[8]   From brunn-minkowski to sharp sobolev inequalities [J].
Bobkov, S. G. ;
Ledoux, M. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2008, 187 (03) :369-384
[9]   From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities [J].
Bobkov, SG ;
Ledoux, M .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (05) :1028-1052
[10]   Invariant Carnot-Caratheodory metrics on S3, SO(3), SL(2), and lens spaces [J].
Boscain, Ugo ;
Rossi, Francesco .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (04) :1851-1878