Singular limit for stochastic reaction-diffusion equation and generation of random interfaces

被引:29
作者
Funaki, T [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, Tokyo 1538914, Japan
来源
ACTA MATHEMATICA SINICA-ENGLISH SERIES | 1999年 / 15卷 / 03期
关键词
singular limit; reaction-diffusion equations; randomly perturbed motion;
D O I
10.1007/BF02650735
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Singular limit is investigated for reaction-diffusion equations with an additive noise in a bounded domain of Ra. The solution converges to one of the two stable phases {+1, -1} determined from the reaction term; accordingly a phase separation curve is generated in the limit. We shall derive a randomly perturbed motion by curvature for the dynamics of the phase separation curve. 1991MR Subject Classification 60H.
引用
收藏
页码:407 / 438
页数:32
相关论文
共 31 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]   DYNAMICAL FLUCTUATIONS AT THE CRITICAL-POINT - CONVERGENCE TO A NONLINEAR STOCHASTIC PDE [J].
BERTINI, L ;
PRESUTTI, E ;
RUDIGER, B ;
SAADA, E .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 1994, 38 (04) :586-629
[3]   ASYMPTOTIC ANALYSIS OF PDES WITH WIDEBAND NOISE DISTURBANCES, AND EXPANSION OF THE MOMENTS [J].
BOUC, R ;
PARDOUX, E .
STOCHASTIC ANALYSIS AND APPLICATIONS, 1984, 2 (04) :369-422
[4]  
Chen M F, 1992, MARKOV CHAINS NONEQU
[5]   Asymptotic behavior of solutions of an Allen-Cahn equation with a nonlocal term [J].
Chen, XF ;
Hilhorst, D ;
Logak, E .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (07) :1283-1298
[6]   A diffusion-approximation theorem in Navier-Stokes equation [J].
Clouet, JF .
STOCHASTIC ANALYSIS AND APPLICATIONS, 1996, 14 (01) :33-46
[7]   REACTION DIFFUSION-EQUATIONS FOR INTERACTING PARTICLE-SYSTEMS [J].
DEMASI, A ;
FERRARI, PA ;
LEBOWITZ, JL .
JOURNAL OF STATISTICAL PHYSICS, 1986, 44 (3-4) :589-644
[8]  
DEMASI A, 1994, NONLINEARITY, V7, P633, DOI 10.1088/0951-7715/7/3/001
[9]   MOTION BY CURVATURE BY SCALING NONLOCAL EVOLUTION-EQUATIONS [J].
DEMASI, A ;
ORLANDI, E ;
PRESUTTI, E ;
TRIOLO, L .
JOURNAL OF STATISTICAL PHYSICS, 1993, 73 (3-4) :543-570
[10]  
DEMOTTONI P, 1995, T AM MATH SOC, V347, P1533