Thermal Comfort Prediction Accuracy with Machine Learning between Regression Analysis and Naive Bayes Classifier

被引:11
作者
Sibyan, Hidayatus [1 ]
Svajlenka, Jozef [2 ]
Hermawan, Hermawan [3 ]
Faqih, Nasyiin [4 ]
Arrizqi, Annisa Nabila [5 ]
机构
[1] Univ Sains Al Quran, Quranic Sci Univ, Dept Informat Engn, Jl Hasyim Asyari Km 03, Wonosobo 56351, Indonesia
[2] Tech Univ Kosice, Dept Construct Technol & Management, Kosice 04200, Slovakia
[3] Univ Sains Al Quran, Quranic Sci Univ, Dept Architecture, Jl Hasyim Asyari Km 03, Wonosobo 56351, Indonesia
[4] Univ Sains Al Quran, Quranic Sci Univ, Dept Civil Engn, Jl Hasyim Asyari Km 03, Wonosobo 56351, Indonesia
[5] Univ Islam Indonesia, Dept Civil Engn, Jl Kaliurang Km14 5, Yogyakarta 55584, Indonesia
关键词
machine learning; thermal comfort; regression; naive Bayes; prediction;
D O I
10.3390/su142315663
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Various data analysis methods can make thermal comfort prediction models. One method that is often used is multiple linear regression statistical analysis. Regression analysis needs to be checked for accuracy with other analytical methods. This study compares the making of a thermal comfort prediction model with regression analysis and naive Bayes analysis. The research method used quantitative methods for data collection regarding thermal comfort. The thermal comfort variable, consisting of eight independent variables and one dependent variable, was measured at Wonosobo High School, Indonesia. The analysis to make the prediction model was carried out with two different analyses: multiple linear regression analysis and naive Bayes analysis. The results show that naive Bayes is more accurate than multiple linear regression analysis.
引用
收藏
页数:18
相关论文
共 40 条
[1]   Predicting the impacts of land use/land cover changes on seasonal urban thermal characteristics using machine learning algorithms [J].
Abdulla-Al Kafy ;
Saha, Milan ;
Abdullah-Al-Faisal ;
Rahaman, Zullyadini A. ;
Rahman, Muhammad Tauhidur ;
Liu, Desheng ;
Fattah, Md Abdul ;
Al Rakib, Abdullah ;
AlDousari, Ahmad E. ;
Rahaman, Sk Nafiz ;
Hasan, Md Zakaria ;
Ahasan, Md Ahasanul Karim .
BUILDING AND ENVIRONMENT, 2022, 217
[2]  
Aguilera J.J., 2019, E3S WEB C, V111, P05015, DOI [10.1051/e3sconf/201911105015, DOI 10.1051/E3SCONF/201911105015]
[3]   Investigating the gender differences in indoor thermal comfort perception for summer and winter seasons and comparison of comfort temperature prediction methods [J].
Asif, Ayesha ;
Zeeshan, Muhammad ;
Khan, Shoaib Raza ;
Sohail, Nabia Farrukh .
JOURNAL OF THERMAL BIOLOGY, 2022, 110
[4]   The effect of climatic conditions on occupants' thermal comfort in naturally ventilated nursing homes [J].
Baquero Larriva, Maria Teresa ;
Sofia Mendes, Ana ;
Forcada, Nuria .
BUILDING AND ENVIRONMENT, 2022, 214
[5]   Study and Application of Industrial Thermal Comfort Parameters by Using Bayesian Inference Techniques [J].
Benito, Patricia I. ;
Sebastian, Miguel A. ;
Gonzalez-Gaya, Cristina .
APPLIED SCIENCES-BASEL, 2021, 11 (24)
[6]   BIM-supported sensor placement optimization based on genetic algorithm for multi-zone thermal comfort and IAQ monitoring [J].
Cheng, Jack C. P. ;
Kwok, Helen H. L. ;
Li, Alison T. Y. ;
Tong, Jimmy C. K. ;
Lau, Alexis K. H. .
BUILDING AND ENVIRONMENT, 2022, 216
[7]   Thermal comfort of a radiant cooling system in glass fiber reinforced gypsum roof-An experimental study [J].
Dharmasastha, K. ;
Samuel, D. G. Leo ;
Nagendra, S. M. Shiva ;
Maiya, M. P. .
APPLIED THERMAL ENGINEERING, 2022, 214
[8]   Outdoor thermal comfort research in transient conditions: A narrative literature review [J].
Dzyuban, Yuliya ;
Ching, Graces N. Y. ;
Yik, Sin Kang ;
Tan, Adrian J. ;
Banerjee, Shreya ;
Crank, Peter J. ;
Chow, Winston T. L. .
LANDSCAPE AND URBAN PLANNING, 2022, 226
[9]   Neural network-based model predictive control system for optimizing building automation and management systems of sports facilities [J].
Elnour, Mariam ;
Himeur, Yassine ;
Fadli, Fodil ;
Mohammedsherif, Hamdi ;
Meskin, Nader ;
Ahmad, Ahmad M. ;
Petri, Ioan ;
Rezgui, Yacine ;
Hodorog, Andrei .
APPLIED ENERGY, 2022, 318
[10]   Impact of predictor variables on the performance of future occupancy prediction: Feature selection using genetic algorithms and machine learning [J].
Esrafilian-Najafabadi, Mohammad ;
Haghighat, Fariborz .
BUILDING AND ENVIRONMENT, 2022, 219