Low regularity for the nonlinear Klein-Gordon systems

被引:1
作者
Yuan, Jia [1 ]
Zhang, Junyong [1 ]
机构
[1] China Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
关键词
Low regularity; Klein-Gordon equations system; Bony's decomposition; Well-posedness; EQUATION;
D O I
10.1016/j.na.2008.01.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the global well-posedness below the energy norm of the Cauchy problem for the Klein-Gordon system in R-3. We prove the H-s-global well-posedness with s < 1 of the Cauchy problem for the Klein-Gordon system. The method invoked is different from the well-known Bourgain's method [Jean Bourgain, Refinements of Strichartz's inequality and applications to 2D-NLS with critical nonlinearity, International Mathematial Research Notices 5 (1998) 253-283]. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:982 / 998
页数:17
相关论文
共 50 条
[41]   Stability and blow-up result for a class of a generalized Klein-Gordon equation [J].
Alves, Claudianor O. ;
Carrico, Paulo Cesar ;
Vicente, Andre .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 445
[42]   Nonrelativistic Limit of Ground State Solutions for Nonlinear Dirac-Klein-Gordon Systems [J].
Dong, Xiaojing ;
Tang, Zhongwei .
MINIMAX THEORY AND ITS APPLICATIONS, 2022, 7 (02) :253-276
[43]   ALMOST GLOBAL EXISTENCE FOR THE KLEIN-GORDON EQUATION WITH THE KIRCHHOFF-TYPE NONLINEARITY [J].
Han, Zheng ;
Fang, Daoyuan .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (02) :737-754
[44]   LOW-REGULARITY GLOBAL WELL-POSEDNESS FOR THE KLEIN-GORDON-SCHRODINGER SYSTEM ON R+ [J].
Compaan, E. ;
Tzirakis, N. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (07) :3867-3895
[45]   UNIFORMLY ACCURATE LOW REGULARITY INTEGRATORS FOR THE KLEIN--GORDON EQUATION FROM THE CLASSICAL TO NONRELATIVISTIC LIMIT REGIME [J].
Calvo, Maria Cabrera ;
Schratz, Katharina .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (02) :888-912
[46]   Modified low regularity well-posedness for the one-dimensional Dirac-Klein-Gordon system [J].
Hartmut Pecher .
Nonlinear Differential Equations and Applications NoDEA, 2008, 15 :279-294
[47]   Modified low regularity well-posedness for the one-dimensional Dirac-Klein-Gordon system [J].
Pecher, Hartmut .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2008, 15 (03) :279-294
[48]   Regarding the group preserving scheme and method of line to the numerical simulations of Klein-Gordon model [J].
Gao, Wei ;
Partohaghighi, Mohammad ;
Baskonus, Haci Mehmet ;
Ghavi, Samaneh .
RESULTS IN PHYSICS, 2019, 15
[49]   On the Klein-Gordon oscillator in topologically charged Ellis-Bronnikov-type wormhole spacetime [J].
Soares, A. R. ;
Vitoria, R. L. L. ;
Aounallah, H. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (09)
[50]   Effects of Kaluza-Klein Theory and Potential on a Generalized Klein-Gordon Oscillator in the Cosmic String Space-Time [J].
Ahmed, Faizuddin .
ADVANCES IN HIGH ENERGY PHYSICS, 2020, 2020