Low regularity for the nonlinear Klein-Gordon systems

被引:1
作者
Yuan, Jia [1 ]
Zhang, Junyong [1 ]
机构
[1] China Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
关键词
Low regularity; Klein-Gordon equations system; Bony's decomposition; Well-posedness; EQUATION;
D O I
10.1016/j.na.2008.01.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the global well-posedness below the energy norm of the Cauchy problem for the Klein-Gordon system in R-3. We prove the H-s-global well-posedness with s < 1 of the Cauchy problem for the Klein-Gordon system. The method invoked is different from the well-known Bourgain's method [Jean Bourgain, Refinements of Strichartz's inequality and applications to 2D-NLS with critical nonlinearity, International Mathematial Research Notices 5 (1998) 253-283]. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:982 / 998
页数:17
相关论文
共 50 条
[21]   A new numerical method for discretization of the nonlinear Klein-Gordon model arising in light waves [J].
Mesgarani, Hamid ;
Aghdam, Yones Esmaeelzade ;
Darabi, Ezzatollah .
JOURNAL OF MATHEMATICAL MODELING, 2024, 12 (01) :71-84
[22]   On nonlinear Schrodinger equations derived from the nonrelativistic limit of nonlinear Klein-Gordon equations in de Sitter spacetime [J].
Nakamura, Makoto .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (07) :3366-3388
[23]   Global Dynamics Above the Ground State for the Nonlinear Klein-Gordon Equation Without a Radial Assumption [J].
Nakanishi, K. ;
Schlag, W. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 203 (03) :809-851
[24]   Kink topology control by high-frequency external forces in nonlinear Klein-Gordon models [J].
Alvarez-Nodarse, R. ;
Quintero, N. R. ;
Mertens, F. G. .
PHYSICAL REVIEW E, 2014, 90 (04)
[26]   Stabilization of the Critical Semilinear Klein-Gordon Equation in Compact Space [J].
Liu, Zihui ;
Ning, Zhen-Hu .
JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (10)
[27]   Spectral solutions for fractional Klein-Gordon models of distributed order [J].
Abdelkawy, M. A. ;
Owyed, Saud ;
Soluma, E. M. ;
Matoog, R. T. ;
Tedjani, A. H. .
ALEXANDRIA ENGINEERING JOURNAL, 2024, 98 :256-265
[28]   Scattering of Klein-Gordon particles by a Kink-like potential [J].
Hassanabadi, H. ;
Lu, Liangliang ;
Maghsoodi, E. ;
Liu, Guanghui ;
Zarrinkamar, S. .
ANNALS OF PHYSICS, 2014, 342 :264-269
[29]   A new analysis for Klein-Gordon model with local fractional derivative [J].
Wang, KangLe ;
Wang, KangJia .
ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (05) :3309-3313
[30]   Klein-Gordon Potentials Solvable in Terms of the General Heun Functions [J].
Ishkhanyan, A. M. ;
Krainov, V. P. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (08) :3538-3547