Low regularity for the nonlinear Klein-Gordon systems

被引:1
|
作者
Yuan, Jia [1 ]
Zhang, Junyong [1 ]
机构
[1] China Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
关键词
Low regularity; Klein-Gordon equations system; Bony's decomposition; Well-posedness; EQUATION;
D O I
10.1016/j.na.2008.01.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the global well-posedness below the energy norm of the Cauchy problem for the Klein-Gordon system in R-3. We prove the H-s-global well-posedness with s < 1 of the Cauchy problem for the Klein-Gordon system. The method invoked is different from the well-known Bourgain's method [Jean Bourgain, Refinements of Strichartz's inequality and applications to 2D-NLS with critical nonlinearity, International Mathematial Research Notices 5 (1998) 253-283]. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:982 / 998
页数:17
相关论文
共 50 条
  • [1] A SYMMETRIC LOW-REGULARITY INTEGRATOR FOR NONLINEAR KLEIN-GORDON EQUATION
    Wang, Yan
    Zhao, Xiaofei
    MATHEMATICS OF COMPUTATION, 2022, 91 (337) : 2215 - 2245
  • [2] Regularity for a nonlinear systems of Klein-Gordon equations with critical nonlinearities.
    deMagalhaes, PMD
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1997, 11B (03): : 587 - 604
  • [3] Breather compactons in nonlinear Klein-Gordon systems
    Dinda, PT
    Remoissenet, M
    PHYSICAL REVIEW E, 1999, 60 (05): : 6218 - 6221
  • [4] A NONLINEAR KLEIN-GORDON EQUATION
    SCOTT, AC
    AMERICAN JOURNAL OF PHYSICS, 1969, 37 (01) : 52 - &
  • [5] Nonlinear Klein-Gordon equation
    Appl Math Lett, 3 (09):
  • [6] Nonlinear Klein-Gordon equation
    Adomian, G
    APPLIED MATHEMATICS LETTERS, 1996, 9 (03) : 9 - 10
  • [7] RELATIVISTIC KLEIN-GORDON SYSTEMS
    CHUNG, KC
    KODAMA, T
    TEIXEIRA, AFF
    PHYSICAL REVIEW D, 1977, 16 (08): : 2412 - 2416
  • [8] On nonlinear fractional Klein-Gordon equation
    Golmankhaneh, Alireza K.
    Golmankhaneh, Ali K.
    Baleanu, Dumitru
    SIGNAL PROCESSING, 2011, 91 (03) : 446 - 451
  • [9] LOW-ENERGY SCATTERING FOR NONLINEAR KLEIN-GORDON EQUATIONS
    PECHER, H
    JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 63 (01) : 101 - 122
  • [10] Decay for nonlinear Klein-Gordon equations
    Vladimir Georgiev
    Sandra Lucente
    Nonlinear Differential Equations and Applications NoDEA, 2004, 11 : 529 - 555