Crowdsourced MRI quality metrics and expert quality annotations for training of humans and machines

被引:44
作者
Esteban, Oscar [1 ]
Blair, Ross W. [1 ]
Nielson, Dylan M. [2 ]
Varada, Jan C. [3 ]
Marrett, Sean [3 ]
Thomas, Adam G. [2 ]
Poldrack, Russell A. [1 ]
Gorgolewski, Krzysztof J. [1 ]
机构
[1] Stanford Univ, Dept Psychol, Stanford, CA 94305 USA
[2] NIMH, Data Sci & Sharing Team, Bethesda, MD 20892 USA
[3] NIMH, Funct MRI Facil, Bethesda, MD 20892 USA
关键词
MAGNETIC-RESONANCE IMAGES; SIGNAL-TO-NOISE; HEAD MOTION;
D O I
10.1038/s41597-019-0035-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The neuroimaging community is steering towards increasingly large sample sizes, which are highly heterogeneous because they can only be acquired by multi-site consortia. The visual assessment of every imaging scan is a necessary quality control step, yet arduous and time-consuming. A sizeable body of evidence shows that images of low quality are a source of variability that may be comparable to the effect size under study. We present the MRIQC Web-API, an open crowdsourced database that collects image quality metrics extracted from MR images and corresponding manual assessments by experts. The database is rapidly growing, and currently contains over 100,000 records of image quality metrics of functional and anatomical MRIs of the human brain, and over 200 expert ratings. The resource is designed for researchers to share image quality metrics and annotations that can readily be reused in training human experts and machine learning algorithms. The ultimate goal of the database is to allow the development of fully automated quality control tools that outperform expert ratings in identifying subpar images.
引用
收藏
页数:7
相关论文
共 28 条
[1]   Subtle In-Scanner Motion Biases Automated Measurement of Brain Anatomy From In Vivo MRI [J].
Alexander-Bloch, Aaron ;
Clasen, Liv ;
Stockman, Michael ;
Ronan, Lisa ;
Lalonde, Francois ;
Giedd, Jay ;
Raznahan, Armin .
HUMAN BRAIN MAPPING, 2016, 37 (07) :2385-2397
[2]   Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank [J].
Alfaro-Almagro, Fidel ;
Jenkinson, Mark ;
Bangerter, Neal K. ;
Andersson, Jesper L. R. ;
Griffanti, Ludovica ;
Douaud, Gwenaelle ;
Sotiropoulos, Stamatios N. ;
Jbabdi, Saad ;
Hernandez-Fernandez, Moises ;
Vallee, Emmanuel ;
Vidaurre, Diego ;
Webster, Matthew ;
McCarthy, Paul ;
Rorden, Christopher ;
Daducci, Alessandro ;
Alexander, Daniel C. ;
Zhang, Hui ;
Dragonu, Iulius ;
Matthews, Paul M. ;
Miller, Karla L. ;
Smith, Stephen M. .
NEUROIMAGE, 2018, 166 :400-424
[3]   Automatic correction of motion artifacts in magnetic resonance images using an entropy focus criterion [J].
Atkinson, D ;
Hill, DLG ;
Stoyle, PNR ;
Summers, PE ;
Keevil, SF .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1997, 16 (06) :903-910
[4]   Quality Control of Structural MRI Images Applied Using FreeSurfer-A Hands-On Workflow to Rate Motion Artifacts [J].
Backhausen, Lea L. ;
Herting, Megan M. ;
Buse, Judith ;
Roessner, Veit ;
Smolka, Michael N. ;
Vetter, Nora C. .
FRONTIERS IN NEUROSCIENCE, 2016, 10
[5]   Measurement of signal-to-noise ratios in MR images: Influence of multichannel coils, parallel imaging, and reconstruction filters [J].
Dietrich, Olaf ;
Raya, Jose G. ;
Reeder, Scott B. ;
Reiser, Maximilian F. ;
Schoenberg, Stefan O. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2007, 26 (02) :375-385
[6]   MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites [J].
Esteban, Oscar ;
Birman, Daniel ;
Schaer, Marie ;
Koyejo, Oluwasanmi O. ;
Poldrack, Russell A. ;
Gorgolewski, Krzysztof J. .
PLOS ONE, 2017, 12 (09)
[7]   Unbiased average age-appropriate atlases for pediatric studies [J].
Fonov, Vladimir ;
Evans, Alan C. ;
Botteron, Kelly ;
Almli, C. Robert ;
McKinstry, Robert C. ;
Collins, D. Louis .
NEUROIMAGE, 2011, 54 (01) :313-327
[8]   Harmonization of cortical thickness measurements across scanners and sites [J].
Fortin, Jean-Philippe ;
Cullen, Nicholas ;
Sheline, Yvette I. ;
Taylor, Warren D. ;
Aselcioglu, Irem ;
Cook, Philip A. ;
Adams, Phil ;
Cooper, Crystal ;
Fava, Maurizio ;
McGrath, Patrick J. ;
McInnis, Melvin ;
Phillips, Mary L. ;
Trivedi, Madhukar H. ;
Weissman, Myrna M. ;
Shinohara, Russell T. .
NEUROIMAGE, 2018, 167 :104-120
[9]   Test-retest and between-site reliability in a multicenter fMRI study [J].
Friedman, Lee ;
Stern, Hal ;
Brown, Gregory G. ;
Mathalon, Daniel H. ;
Turner, Jessica ;
Glover, Gary H. ;
Gollub, Randy L. ;
Lauriello, John ;
Lim, Kelvin O. ;
Cannon, Tyrone ;
Greve, Douglas N. ;
Bockholt, Henry Jeremy ;
Belger, Aysenil ;
Mueller, Bryon ;
Doty, Michael J. ;
He, Jianchun ;
Wells, William ;
Smyth, Padhraic ;
Pieper, Steve ;
Kim, Seyoung ;
Kubicki, Marek ;
Vangel, Mark ;
Potkin, Steven G. .
HUMAN BRAIN MAPPING, 2008, 29 (08) :958-972
[10]   Intensity Inhomogeneity Correction of Structural MR Images: A Data-Driven Approach to Define Input Algorithm Parameters [J].
Ganzetti, Marco ;
Wenderoth, Nicole ;
Mantini, Dante .
FRONTIERS IN NEUROINFORMATICS, 2016, 10