Modified Tseng's extragradient methods for solving pseudo-monotone variational inequalities

被引:63
作者
Duong Viet Thong [1 ]
Phan Tu Vuong [2 ]
机构
[1] Ton Duc Thang Univ, Fac Math & Stat, Appl Anal Res Grp, Ho Chi Minh City, Vietnam
[2] Univ Vienna, Fac Math, Vienna, Austria
基金
奥地利科学基金会;
关键词
Forward-Backward-Forward method; extragradient method; Mann-type method; variational inequality; pseudo-monotone operator; WEAK-CONVERGENCE; PROJECTION METHOD; POINT; ALGORITHMS;
D O I
10.1080/02331934.2019.1616191
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose two modified Tseng's extragradient methods (also known as Forward-Backward-Forward methods) for solving non-Lipschitzian and pseudo-monotone variational inequalities in real Hilbert spaces. Under mild and standard conditions, we obtain the weak and strong convergence of the proposed methods. Numerical examples for illustrating the behaviour of the proposed methods are also presented
引用
收藏
页码:2203 / 2222
页数:20
相关论文
共 38 条
[1]  
Antipin A. S., 1976, Ekonom. i Mat. Metody, V12, P1164
[2]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[3]  
Bo RI, 2018, ARXIV180808084
[4]   Weak Convergence of an Iterative Method for Pseudomonotone Variational Inequalities and Fixed-Point Problems [J].
Ceng, L. C. ;
Teboulle, M. ;
Yao, J. C. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2010, 146 (01) :19-31
[5]   The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space [J].
Censor, Y. ;
Gibali, A. ;
Reich, S. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 148 (02) :318-335
[6]   Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space [J].
Censor, Yair ;
Gibali, Aviv ;
Reich, Simeon .
OPTIMIZATION METHODS & SOFTWARE, 2011, 26 (4-5) :827-845
[7]   Extensions of Korpelevich's extragradient method for the variational inequality problem in Euclidean space [J].
Censor, Yair ;
Gibali, Aviv ;
Reich, Simeon .
OPTIMIZATION, 2012, 61 (09) :1119-1132
[8]   PSEUDOMONOTONE COMPLEMENTARITY-PROBLEMS IN HILBERT-SPACE [J].
COTTLE, RW ;
YAO, JC .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 75 (02) :281-295
[9]   Convergence of the Modified Extragradient Method for Variational Inequalities with Non-Lipschitz Operators [J].
Denisov S.V. ;
Semenov V.V. ;
Chabak L.M. .
Cybernetics and Systems Analysis, 2015, 51 (05) :757-765
[10]   Inertial extragradient algorithms for strongly pseudomonotone variational inequalities [J].
Duong Viet Thong ;
Dang Van Hieu .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 341 :80-98