Perplexing cooperative folding and stability of a low-sequence complexity, polyproline 2 protein lacking a hydrophobic core

被引:24
作者
Gates, Zachary P. [1 ]
Baxa, Michael C. [2 ,3 ]
Yu, Wookyung [2 ,5 ]
Riback, Joshua A. [3 ,4 ]
Li, Hui [2 ]
Roux, Benoit [1 ,2 ,3 ]
Kent, Stephen B. H. [1 ,2 ,3 ]
Sosnick, Tobin R. [2 ,3 ]
机构
[1] Univ Chicago, Dept Chem, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA
[3] Univ Chicago, Inst Biophys Dynam, Chicago, IL 60637 USA
[4] Univ Chicago, Grad Program Biophys Sci, Chicago, IL 60637 USA
[5] Daegu Gyeongbuk Inst tute Sci & Technol DGIST, Dept Brain & Cognit Sci, Daegu 42988, South Korea
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
protein folding; cooperativity; kinetics; PP2; hydrogen bonding; FLEA ANTIFREEZE PROTEIN; NONNATIVE INTERACTIONS; POTENTIAL FUNCTIONS; MOLECULAR-DYNAMICS; ENERGY LANDSCAPES; TRANSITION-STATE; UNFOLDED STATE; HYDROGEN-BONDS; BACKBONE; COLLAPSE;
D O I
10.1073/pnas.1609579114
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The burial of hydrophobic side chains in a protein core generally is thought to be the major ingredient for stable, cooperative folding. Here, we show that, for the snow flea antifreeze protein (sfAFP), stability and cooperativity can occur without a hydrophobic core, and without a-helices or beta-sheets. sfAFP has low sequence complexity with 46% glycine and an interior filled only with backbone H-bonds between six polyproline 2 (PP2) helices. However, the protein folds in a kinetically two-state manner and is moderately stable at room temperature. We believe that a major part of the stability arises from the unusual match between residue-level PP2 dihedral angle bias in the unfolded state and PP2 helical structure in the native state. Additional stabilizing factors that compensate for the dearth of hydrophobic burial include shorter and stronger H-bonds, and increased entropy in the folded state. These results extend our understanding of the origins of cooperativity and stability in protein folding, including the balance between solvent and polypeptide chain entropies.
引用
收藏
页码:2241 / 2246
页数:6
相关论文
共 74 条
  • [1] Apparent two-state tendamistat folding is a sequential process along a defined route
    Bachmann, A
    Kiefhaber, T
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2001, 306 (02) : 375 - 386
  • [2] Probing Possible Downhill Folding: Native Contact Topology Likely Places a Significant Constraint on the Folding Cooperativity of Proteins with ∼40 Residues
    Badasyan, Artem
    Liu, Zhirong
    Chan, Hue Sun
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2008, 384 (02) : 512 - 530
  • [3] The new view of hydrophobic free energy
    Baldwin, Robert L.
    [J]. FEBS LETTERS, 2013, 587 (08) : 1062 - 1066
  • [4] Bartlett GJ, 2010, NAT CHEM BIOL, V6, P615, DOI [10.1038/nchembio.406, 10.1038/NCHEMBIO.406]
  • [5] Loss of conformational entropy in protein folding calculated using realistic ensembles and its implications for NMR-based calculations
    Baxa, Michael C.
    Haddadian, Esmael J.
    Jumper, John M.
    Freed, Karl F.
    Sosnick, Tobin R.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (43) : 15396 - 15401
  • [6] Context and Force Field Dependence of the Loss of Protein Backbone Entropy upon Folding Using Realistic Denatured and Native State Ensembles
    Baxa, Michael C.
    Haddadian, Esmael J.
    Jha, Abhishek K.
    Freed, Karl F.
    Sosnick, Tobin R.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (38) : 15929 - 15936
  • [7] Crystallographic evidence for C-alpha-H center dot center dot center dot O=C hydrogen bonds in a collagen triple helix
    Bella, J
    Berman, HM
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1996, 264 (04) : 734 - 742
  • [8] Entropic stabilization of proteins and its proteomic consequences
    Berezovsky, IN
    Chen, WW
    Choi, PJ
    Shakhnovich, EI
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2005, 1 (04) : 322 - 332
  • [9] Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone φ, ψ and Side-Chain χ1 and χ2 Dihedral Angles
    Best, Robert B.
    Zhu, Xiao
    Shim, Jihyun
    Lopes, Pedro E. M.
    Mittal, Jeetain
    Feig, Michael
    MacKerell, Alexander D., Jr.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (09) : 3257 - 3273
  • [10] CHARMM: The Biomolecular Simulation Program
    Brooks, B. R.
    Brooks, C. L., III
    Mackerell, A. D., Jr.
    Nilsson, L.
    Petrella, R. J.
    Roux, B.
    Won, Y.
    Archontis, G.
    Bartels, C.
    Boresch, S.
    Caflisch, A.
    Caves, L.
    Cui, Q.
    Dinner, A. R.
    Feig, M.
    Fischer, S.
    Gao, J.
    Hodoscek, M.
    Im, W.
    Kuczera, K.
    Lazaridis, T.
    Ma, J.
    Ovchinnikov, V.
    Paci, E.
    Pastor, R. W.
    Post, C. B.
    Pu, J. Z.
    Schaefer, M.
    Tidor, B.
    Venable, R. M.
    Woodcock, H. L.
    Wu, X.
    Yang, W.
    York, D. M.
    Karplus, M.
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (10) : 1545 - 1614