A PTFE helical capillary microreactor for the high throughput synthesis of monodisperse silica particles

被引:23
作者
Yang, Hui [1 ,2 ,3 ]
Akinoglu, Eser Metin [1 ,4 ]
Guo, Lijing [1 ]
Jin, Mingliang [1 ]
Zhou, Guofu [1 ,2 ,3 ]
Giersig, Michael [1 ,5 ]
Shui, Lingling [1 ,6 ]
Mulvaney, Paul [1 ,4 ]
机构
[1] South China Normal Univ, Int Acad Optoelect Zhaoqing, Zhaoqing 526238, Guangdong, Peoples R China
[2] South China Normal Univ, South China Acad Adv Optoelect, Guangdong Prov Key Lab Opt Informat Mat & Technol, Guangzhou 510006, Peoples R China
[3] South China Normal Univ, South China Acad Adv Optoelect, Inst Elect Paper Displays, Guangzhou 510006, Peoples R China
[4] Univ Melbourne, Sch Chem, ARC Ctr Excellence Exciton Sci, Parkville, Vic 3010, Australia
[5] Polish Acad Sci, Inst Fundamental Technol Res, PL-02106 Warsaw, Poland
[6] South China Normal Univ, Sch Informat & Optoelect Sci & Engn, Guangzhou 510006, Guangdong, Peoples R China
基金
澳大利亚研究理事会;
关键词
SiO2 particle synthesis; Continuous flow synthesis; Helical capillary microreactor; CONTINUOUS-FLOW SYNTHESIS; PROCESS INTENSIFICATION; SPHERICAL SILICA; HEAT-TRANSFER; GROWTH; SIZE; MICROFLUIDICS; NANOPARTICLES; NUCLEATION;
D O I
10.1016/j.cej.2020.126063
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We propose a simple and inexpensive SiO2 submicron particle synthesis method based on a PTFE helical capillary microreactor. The device is based on Dean flow mediated, ultrafast mixing of two liquid phases in a microfluidic spiral pipe. Excellent control of particle size between 100 nm and 600 nm and narrow polydispersity can be achieved by controlling the device and process parameters. Numerical simulations are performed to determine the optimal device dimensions. In the mother liquor the silica particles exhibit zeta potentials < -60 mV, rendering them very stable even at high particle volume fractions. The current device typically produces around 0.234 g/h of the silica particles.
引用
收藏
页数:7
相关论文
共 36 条
[1]  
[Anonymous], 2019, ANAL CHEM, DOI DOI 10.3390/COATINGS9080500
[2]  
[Anonymous], 2011, 15 INT C MINIATURIZE
[3]  
Dean WR, 1928, PHILOS MAG, V5, P673
[4]   Fast nucleation for silica nanoparticle synthesis using a sol-gel method [J].
Dixit, Chandra K. ;
Bhakta, Snehasis ;
Kumar, Ajeet ;
Suib, Steven L. ;
Rusling, James F. .
NANOSCALE, 2016, 8 (47) :19662-19667
[5]   Revising the synthesis of Stober silica nanoparticles: A multivariate assessment study on the effects of reaction parameters on the particle size [J].
Fernandes, Rafael S. ;
Raimundo Jr, Ivo M. ;
Fernanda Pimentel, M. .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2019, 577 :1-7
[6]   Comparative study of the synthesis of silica nanoparticles in micromixer-microreactor and batch reactor systems [J].
Gutierrez, Laura ;
Gomez, Leyre ;
Irusta, Silvia ;
Arruebo, Manuel ;
Santamaria, Jesus .
CHEMICAL ENGINEERING JOURNAL, 2011, 171 (02) :674-683
[7]   Microfluidic continuous flow synthesis of functional hollow spherical silica with hierarchical sponge-like large porous shell [J].
Hao, Nanjing ;
Nie, Yuan ;
Xu, Zhe ;
Closson, Andrew B. ;
Usherwood, Thomas ;
Zhang, John X. J. .
CHEMICAL ENGINEERING JOURNAL, 2019, 366 :433-438
[8]   Microfluidics-enabled rapid manufacturing of hierarchical silica-magnetic microflower toward enhanced circulating tumor cell screening [J].
Hao, Nanjing ;
Nie, Yuan ;
Tadimety, Amogha ;
Shen, Ting ;
Zhang, John X. J. .
BIOMATERIALS SCIENCE, 2018, 6 (12) :3121-3125
[9]   A hybrid microreactor/microwave high-pressure flow system of a novel concept design and its application to the synthesis of silver nanoparticles [J].
Horikoshi, Satoshi ;
Sumi, Takuya ;
Serpone, Nick .
CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2013, 73 :59-66
[10]   Heat transfer and thermodynamic analyses of a helically coiled heat exchanger using different types of nanofluids [J].
Khairul, M. A. ;
Saidur, R. ;
Rahman, M. M. ;
Alim, M. A. ;
Hossain, A. ;
Abdin, Z. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 67 :398-403