Interlacing of zeros of orthogonal polynomials under modification of the measure

被引:7
作者
Dimitrov, Dimitar K. [1 ]
Ismail, Mourad E. H. [2 ,3 ]
Rafaeli, Fernando R. [1 ]
机构
[1] Univ Estadual Paulista UNESP, Inst Biociencias Letras & Ciencias Exatas, Dept Matemat Aplicada, Jaboticabal, Brazil
[2] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
[3] King Saud Univ, Coll Sci, Dept Math, Riyadh 11451, Saudi Arabia
基金
巴西圣保罗研究基金会;
关键词
Orthogonal polynomials; Classical orthogonal polynomials; q-orthogonal polynomials; Zeros; Interlacing; Monotonicity; LINEAR-COMBINATIONS; DIFFERENT SEQUENCES; JACOBI-POLYNOMIALS;
D O I
10.1016/j.jat.2013.07.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the mutual location of the zeros of two families of orthogonal polynomials. One of the families is orthogonal with respect to the measure d mu(x), supported on the interval (a, b) and the other with respect to the measure vertical bar x - c vertical bar(tau)vertical bar x - d vertical bar(gamma) d mu(x), where c and d are outside (a, b). We prove that the zeros of these polynomials, if they are of equal or consecutive degrees, interlace when either 0 < tau, gamma <= 1 or gamma = 0 and 0 < tau <= 2. This result is inspired by an open question of Richard Askey and it generalizes recent results on some families of orthogonal polynomials. Moreover, we obtain further statements on interlacing of zeros of specific orthogonal polynomials, such as the Askey-Wilson ones. (c) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:64 / 76
页数:13
相关论文
共 50 条
  • [31] Sharp bounds for the extreme zeros of classical orthogonal polynomials
    Dimitrov, Dimitar K.
    Nikolov, Geno P.
    JOURNAL OF APPROXIMATION THEORY, 2010, 162 (10) : 1793 - 1804
  • [32] On the zeros of orthogonal polynomials: The elliptic case
    Peherstorfer, F
    CONSTRUCTIVE APPROXIMATION, 2004, 20 (03) : 377 - 397
  • [33] Limits of zeros of orthogonal polynomials on the circle
    Simon, B
    Totik, V
    MATHEMATISCHE NACHRICHTEN, 2005, 278 (12-13) : 1615 - 1620
  • [34] Zeros of Orthogonal Polynomials Generated by the Geronimus Perturbation of Measures
    Branquinho, Amilcar
    Huertas, Edmundo J.
    Rafaeli, Fernando R.
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2014, PT 1, 2014, 8579 : 44 - 59
  • [35] Zeros of orthogonal polynomials generated by canonical perturbations of measures
    Huertas, Edmundo J.
    Marcellan, Francisco
    Rafaeli, Fernando R.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (13) : 7109 - 7127
  • [36] Electrostatic Partners and Zeros of Orthogonal and Multiple Orthogonal Polynomials
    Andrei Martínez-Finkelshtein
    Ramón Orive
    Joaquín Sánchez-Lara
    Constructive Approximation, 2023, 58 : 271 - 342
  • [37] Electrostatic Partners and Zeros of Orthogonal and Multiple Orthogonal Polynomials
    Martinez-Finkelshtein, Andrei
    Orive, Ramon
    Sanchez-Lara, Joaquin
    CONSTRUCTIVE APPROXIMATION, 2023, 58 (02) : 271 - 342
  • [38] Convexity of the zeros of some orthogonal polynomials and related functions
    Jordaan, Kerstin
    Tookos, Ferenc
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 233 (03) : 762 - 767
  • [39] On Markov's theorem on zeros of orthogonal polynomials revisited
    Castillo, K.
    Costa, M. S.
    Rafaeli, F. R.
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 339 : 390 - 397