MHD Stagnation-Point Flow over a Nonlinearly Stretching/Shrinking Sheet

被引:12
作者
Jafar, Khamisah [1 ]
Ishak, Anuar [2 ]
Nazar, Roslinda [2 ]
机构
[1] Univ Kebangsaan Malaysia, Fac Engn & Built Environm, Bangi 43600, Malaysia
[2] Univ Kebangsaan Malaysia, Sch Math Sci, Fac Sci & Technol, Bangi 43600, Malaysia
关键词
Sheets; Shrinkage; Magnetic fields; Parameters; Fluid flow; Aerospace engineering; Stagnation point; Magnetohydrodynamic; Stretching; shrinking sheet; Dual solutions; BOUNDARY-LAYER-FLOW; SHRINKING SHEET; VISCOUS-FLOW; SIMILARITY SOLUTIONS; HEAT-TRANSFER; SURFACE; FLUID; EQUATION; ADJACENT;
D O I
10.1061/(ASCE)AS.1943-5525.0000186
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The steady laminar two-dimensional magnetohydrodynamic (MHD) stagnation-point flow of an incompressible viscous fluid impinging normal to a nonlinearly stretching/shrinking flat sheet in the presence of a nonuniform magnetic field applied in the positive y-direction normal to the flat sheet is considered. The governing system of partial differential equations is first transformed into ordinary differential equations and solved numerically using an implicit finite-difference scheme known as the Keller-box method. The effects of the magnetic parameter M, the velocity exponent parameter m, and the stretching/shrinking parameter epsilon on the flow field are discussed. It is found that the magnitude of the skin friction coefficient |f(0)| increases with both the magnetic parameter M and the velocity exponent parameter m, when the stretching velocity differs from the free-stream velocity (epsilon 1), and is zero when epsilon=1. For a fixed value of the magnetic parameter M, a unique or dual solutions are found for the shrinking sheet, depending on the values of the parameters m and epsilon.
引用
收藏
页码:829 / 834
页数:6
相关论文
共 28 条
[1]   Unsteady three-dimensional boundary layer flow due to a permeable shrinking sheet [J].
Bachok, N. ;
Ishak, A. ;
Pop, I. .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2010, 31 (11) :1421-1428
[2]  
BANKS WHH, 1983, J MEC THEOR APPL, V2, P375
[3]  
Cebeci T., 1988, Physical and computational aspects of convective heat transfer
[4]  
CHAUDHARY MA, 1995, EUR J MECH B-FLUID, V14, P217
[5]   FLOW PAST A STRETCHING PLATE [J].
CRANE, LJ .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1970, 21 (04) :645-&
[6]   Viscous Flow over an Unsteady Shrinking Sheet with Mass Transfer [J].
Fang Tie-Gang ;
Zhang Ji ;
Yao Shan-Shan .
CHINESE PHYSICS LETTERS, 2009, 26 (01)
[7]   Thermal boundary layers over a shrinking sheet: an analytical solution [J].
Fang, Tiegang ;
Zhang, Ji .
ACTA MECHANICA, 2010, 209 (3-4) :325-343
[8]   Closed-form exact solutions of MHD viscous flow over a shrinking sheet [J].
Fang, Tiegang ;
Zhang, Ji .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (07) :2853-2857
[9]   A new solution branch for the Blasius equation-A shrinking sheet problem [J].
Fang, Tiegang ;
Liang, Wei ;
Lee, Chia-fon F. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (12) :3088-3095
[10]   Boundary layer flow over a shrinking sheet with power-law velocity [J].
Fang, Tiegang .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2008, 51 (25-26) :5838-5843