Spectral and oscillatory properties of a linear pencil of fourth-order differential operators

被引:11
作者
Ben Amara, J. [1 ]
Shkalikov, A. A. [2 ]
Vladimirov, A. A. [3 ]
机构
[1] Univ 7th November Carthage, Tunis, Tunisia
[2] Moscow MV Lomonosov State Univ, Moscow, Russia
[3] Russian Acad Sci, Dorodnicyn Comp Ctr, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
linear differential operator; initial boundary-value problem; pencil of operators; number of zeros of eigenfunctions; EQUATION;
D O I
10.1134/S0001434613070055
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper deals with the spectral and oscillatory properties of a linear operator pencilA - lambda B, where the coefficient A corresponds to the differential expression (pyaEuro(3))aEuro(3) and the coefficient B corresponds to the differential expression -yaEuro(3) + cry. In particular, it is shown that all negative eigenvalues of the pencil are simple and, under some additional conditions, the number of zeros of the corresponding eigenfunctions is related to the serial number of the corresponding eigenvalue.
引用
收藏
页码:49 / 59
页数:11
相关论文
共 24 条
[1]  
[Anonymous], 2009, STURMS OSCILLATION M
[2]  
[Anonymous], HYDRODYNAMIC STABILI
[3]  
[Anonymous], 1997, APPROXIMATION OPTIMI, DOI [DOI 10.1006/ABIO.1997.2380, 10.1006/abio.1997.2380]
[4]  
[Anonymous], MITT MATH SEM GIESSE
[5]  
[Anonymous], 1948, EIGENWERTPROBLEME IH
[6]   PRUFER TRANSFORMATION FOR EQUATION OF A VIBRATING BEAM SUBJECT TO AXIAL FORCES [J].
BANKS, DO ;
KUROWSKI, GJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1977, 24 (01) :57-74
[7]  
BenAmara J., 2008, J. Math. Sci, V150, P2317, DOI [10.1007/s10958-008-0131-z, DOI 10.1007/S10958-008-0131-Z]
[8]  
Berezin F.A., 1983, Schrodinger equation
[9]   CHEBYSHEV-HAAR SYSTEMS IN THE THEORY OF DISCONTINUOUS KELLOGG KERNELS [J].
BOROVSKIKH, AV ;
POKORNYI, YV .
RUSSIAN MATHEMATICAL SURVEYS, 1994, 49 (03) :1-42
[10]   EIGENVALUE PROBLEMS FOR EQUATION LY + LAMBDAP(X) Y = 0 [J].
ELIAS, U .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1978, 29 (01) :28-57