Graphene-supported Na3V2(PO4)3 as a high rate cathode material for sodium-ion batteries

被引:260
作者
Jung, Young Hwa [1 ]
Lim, Chek Hai [1 ]
Kim, Do Kyung [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea
基金
新加坡国家研究基金会;
关键词
ELECTRODE MATERIALS; INSERTION CATHODE; ENERGY-STORAGE; NA-BATTERIES; LOW-COST; PERFORMANCE; LITHIUM; CARBON; SYSTEMS; OXIDE;
D O I
10.1039/c3ta12116j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Substantial interest in sodium resources that are inexpensive and abundant in the earth has guided intense research on Na-based electrode materials. We report a facile synthetic strategy to improve the rate performance of Na-based electrode materials in sodium-ion batteries. Na3V2(PO4)(3) (NVP) is one of the most promising cathode materials with a NASICON structure, and it has been synthesized on a graphene sheet surface using a simple method that combines sol-gel and solid-state reaction. The NVP/graphene composite displays an excellent high-rate performance; it delivers approximately 67% of the initial 0.2 C capacity at a 30 C rate, whereas bare NVP produces only 46% of the 0.2 C capacity at a 5 C rate. It also demonstrates high capacity retention both at 1 C and 10 C cycles as a promising cathode for rechargeable sodium-ion batteries. This outstanding result can be ascribed to the key role of graphene in enhancing the electronic conductivity of electrode materials compared with bare NVP.
引用
收藏
页码:11350 / 11354
页数:5
相关论文
共 36 条
  • [1] Honeycomb Carbon: A Review of Graphene
    Allen, Matthew J.
    Tung, Vincent C.
    Kaner, Richard B.
    [J]. CHEMICAL REVIEWS, 2010, 110 (01) : 132 - 145
  • [2] THE ELECTRICAL-PROPERTIES OF CERAMIC ELECTROLYTES FOR LIMXTI2-X(PO4)3+YLI2O, M = GE, SN, HF, AND ZR SYSTEMS
    AONO, H
    SUGIMOTO, E
    SADAOKA, Y
    IMANAKA, N
    ADACHI, G
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (07) : 1827 - 1833
  • [3] Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications
    Chen, Da
    Feng, Hongbin
    Li, Jinghong
    [J]. CHEMICAL REVIEWS, 2012, 112 (11) : 6027 - 6053
  • [4] Li2NaV2(PO4)3:: A 3.7 V lithium-insertion cathode with the rhombohedral NASICON structure
    Cushing, BL
    Goodenough, JB
    [J]. JOURNAL OF SOLID STATE CHEMISTRY, 2001, 162 (02) : 176 - 181
  • [5] Layered Na0.71CoO2: a powerful candidate for viable and high performance Na-batteries
    D'Arienzo, Massimiliano
    Ruffo, Riccardo
    Scotti, Roberto
    Morazzoni, Franca
    Maria, Claudio Maria
    Polizzi, Stefano
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (17) : 5945 - 5952
  • [6] THE NASICON-TYPE TITANIUM PHOSPHATES LITI2(PO4)3, NATI2(PO4)3 AS ELECTRODE MATERIALS
    DELMAS, C
    NADIRI, A
    SOUBEYROUX, JL
    [J]. SOLID STATE IONICS, 1988, 28 : 419 - 423
  • [7] Cycle performance improvement of NaCrO2 cathode by carbon coating for sodium ion batteries
    Ding, Jing-Jing
    Zhou, Yong-Ning
    Sun, Qian
    Fu, Zheng-Wen
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2012, 22 : 85 - 88
  • [8] Electrical Energy Storage for the Grid: A Battery of Choices
    Dunn, Bruce
    Kamath, Haresh
    Tarascon, Jean-Marie
    [J]. SCIENCE, 2011, 334 (6058) : 928 - 935
  • [9] Rhombohedral form of Li3V2(PO4)3 as a cathode in Li-ion batteries
    Gaubicher, J
    Wurm, C
    Goward, G
    Masquelier, C
    Nazar, L
    [J]. CHEMISTRY OF MATERIALS, 2000, 12 (11) : 3240 - +
  • [10] Graphene: Status and Prospects
    Geim, A. K.
    [J]. SCIENCE, 2009, 324 (5934) : 1530 - 1534