Maximal volume representations are Fuchsian

被引:19
作者
Francaviglia, S [1 ]
Klaff, B
机构
[1] Univ Autonoma Barcelona, E-08193 Barcelona, Spain
[2] Univ Texas, Austin, TX 78712 USA
关键词
hyperbolic geometry; rigidity; natural maps;
D O I
10.1007/s10711-005-9033-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a volume- rigidity theorem for Fuchsian representations of fundamental groups of hyperbolic k- manifolds into Isom(H-n). Namely, we show that if M is a complete hyperbolic k- manifold with finite volume, then the volume of any representation of pi(1)(M) into Isom(H-n), 3 <= k <= n, is less than the volume of M, and the volume is maximal if and only if the representation is discrete, faithful and `k- Fuchsian'.
引用
收藏
页码:111 / 124
页数:14
相关论文
共 12 条
[1]  
Benedetti R., 1992, LECT HYPERBOLIC GEOM
[2]   Real Schwartz lemma and geometric applications [J].
Besson, G ;
Courtois, G ;
Gallot, S .
ACTA MATHEMATICA, 1999, 183 (02) :145-169
[3]   Minimal entropy and Mostow's rigidity theorems [J].
Besson, G ;
Courtois, G ;
Gallot, S .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1996, 16 :623-649
[4]   ENTROPIES AND RIGIDITIES OF LOCALLY SYMMETRICAL SPACES WITH STRICTLY NEGATIVE CURVATURE [J].
BESSON, G ;
COURTOIS, G ;
GALLOT, S .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1995, 5 (05) :731-799
[5]  
BESSON G, 2004, UNPUB INEGALITE MILN
[6]   Cyclic surgery, degrees of maps of character curves, and volume rigidity for hyperbolic manifolds [J].
Dunfield, NM .
INVENTIONES MATHEMATICAE, 1999, 136 (03) :623-657
[7]  
Francaviglia S, 2004, INT MATH RES NOTICES, V2004, P425
[8]  
FRANCAVIGLIA S, ARXIVMATHGT0405028
[9]  
Gallot S., 1990, RIEMANNIAN GEOMETRY