Gaugeability for Feynman-Kac functionals with applications to symmetric α-stable processes

被引:12
作者
Takeda, Masayoshi [1 ]
机构
[1] Tohoku Univ, Inst Math, Aoba Ku, Sendai, Miyagi 9808578, Japan
关键词
symmetric stable process; gaugeability; subcriticality; ultracontractivity; branching process;
D O I
10.1090/S0002-9939-06-08281-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For symmetric alpha-stable processes, an analytic criterion for a measure being gaugeable was obtained by Z.-Q. Chen ( 2002), M. Takeda ( 2002) and M. Takeda and T. Uemura ( 2004). Applying it, we consider the ultra-contractivity of Feynman-Kac semigroups and expectations of the number of branches hitting closed sets in branching symmetric alpha-stable processes.
引用
收藏
页码:2729 / 2738
页数:10
相关论文
共 19 条
[1]  
ALBEVERIO S, 1991, FEYNMAN KAC SEMIGROU
[2]  
BENDIKOV A, 1994, EXPO MATH, V12, P381
[3]   Gaugeability and conditional gaugeability [J].
Chen, ZQ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (11) :4639-4679
[4]   Girsanov and Feynman-Kac type transformations for symmetric Markov processes [J].
Chen, ZQ ;
Zhang, TS .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2002, 38 (04) :475-505
[5]  
Chen ZQ, 2002, ANN PROBAB, V30, P1313
[6]  
Chung K. L., 1995, A Series of Comprehensive Studies in Mathematics, V312, DOI [DOI 10.1007/978-3-642-57856-4, 10.1007/978-3-642-57856-4]
[7]  
Davies EB., 1989, HEAT KERNELS SPECTRA, DOI 10.1017/CBO9780511566158
[8]  
Dawson D.A., 1993, LECT NOTES MATH, V1541, P1, DOI DOI 10.1007/BFB0084190
[9]  
Fukushima M., 2011, De Gruyter Stud. Math., V19
[10]  
Grigor'yan A, 2003, ANN PROBAB, V31, P244