Unseen image generating domain-free networks for generalized zero-shot learning

被引:4
作者
Kim, Hoseong [1 ]
Lee, Jewook [1 ]
Byun, Hyeran [1 ]
机构
[1] Yonsei Univ, Dept Comp Sci, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Generalized zero-shot learning; Unseen image generation; Extreme data bias; Data bias; Generative adversarial networks;
D O I
10.1016/j.neucom.2020.05.043
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In generalized zero-shot learning (GZSL), it is imperative to solve the bias problem due to extreme data imbalance between seen and unseen classes, i.e., unseen classes are misclassified as seen classes. We alleviate the bias problem by generating synthetic images of unseen classes. The most challenging part is that existing GAN methods are only focused on producing authentic seen images, so realistic unseen images cannot be generated. Specifically, we propose a novel zero-shot generative adversarial network (ZSGAN) which learns the relationship between images and attributes shared by seen and unseen classes. Unlike existing works that generate synthetic features of unseen classes, we can generate more generalizable realistic unseen images. For instance, generated unseen images can be used for zero-shot detection, segmentation, and image translation since images have spatial information. We also propose domain-free networks (DFN) that can effectively distinguish seen and unseen domains for input images. We evaluate our approaches on three challenging GZSL datasets, including CUB, FLO, and AWA2. We outperform the state-of-the-art methods and also empirically verify that our proposed method is a network-agnostic approach, i.e., the generated unseen images can improve performance regardless of the neural network type. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:67 / 77
页数:11
相关论文
共 50 条
  • [41] Zero-Shot Learning with Joint Generative Adversarial Networks
    Zhang, Minwan
    Wang, Xiaohua
    Shi, Yueting
    Ren, Shiwei
    Wang, Weijiang
    ELECTRONICS, 2023, 12 (10)
  • [42] Multi-domain feature-enhanced attribute updater for generalized zero-shot learning
    Yuyan Shi
    Chenyi Jiang
    Feifan Song
    Qiaolin Ye
    Yang Long
    Haofeng Zhang
    Neural Computing and Applications, 2025, 37 (14) : 8397 - 8414
  • [43] Domain-aware multi-modality fusion network for generalized zero-shot learning
    Wang, Jia
    Wang, Xiao
    Zhang, Han
    NEUROCOMPUTING, 2022, 488 : 23 - 35
  • [44] ROBUST BIDIRECTIONAL GENERATIVE NETWORK FOR GENERALIZED ZERO-SHOT LEARNING
    Xing, Yun
    Huang, Sheng
    Huangfu, Luwen
    Chen, Feiyu
    Ge, Yongxin
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [45] Contrastive visual feature filtering for generalized zero-shot learning
    Meng, Shixuan
    Jiang, Rongxin
    Tian, Xiang
    Zhou, Fan
    Chen, Yaowu
    Liu, Junjie
    Shen, Chen
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024,
  • [46] GENERALIZED ZERO-SHOT LEARNING USING CONDITIONAL WASSERSTEIN AUTOENCODER
    Kim, Junhan
    Shim, Byonghyo
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3413 - 3417
  • [47] Inference guided feature generation for generalized zero-shot learning
    Han, Zongyan
    Fu, Zhenyong
    Li, Guangyu
    Yang, Jian
    NEUROCOMPUTING, 2021, 430 : 150 - 158
  • [48] Generalized Zero-Shot Learning using Identifiable Variational Autoencoders
    Gull, Muqaddas
    Arif, Omar
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 191
  • [49] Triple Loss Based Framework for Generalized Zero-Shot Learning
    Shen, Yaying
    Li, Qun
    Xu, Ding
    Zhang, Ziyi
    Yang, Rui
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2022, E105D (04) : 832 - 835
  • [50] Aligning enhanced feature representation for generalized zero-shot learning
    Fang, Zhiyu
    Zhu, Xiaobin
    Yang, Chun
    Zhou, Hongyang
    Qin, Jingyan
    Yin, Xu-Cheng
    SCIENCE CHINA-INFORMATION SCIENCES, 2025, 68 (02)