Improving RGB-D SLAM in dynamic environments: A motion removal approach

被引:267
|
作者
Sun, Yuxiang [1 ]
Liu, Ming [2 ]
Meng, Max Q. -H. [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Elect Engn, Shatin, Hong Kong, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
RGB-D SLAM; Dynamic environments; RANSAC; Motion removal; MOVING-OBJECTS; SEGMENTATION; ALGORITHMS; CAMERAS; COLOR;
D O I
10.1016/j.robot.2016.11.012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Visual Simultaneous Localization and Mapping (SLAM) based on RGB-D data has developed as a fundamental approach for robot perception over the past decades. There is an extensive literature regarding RGB-D SLAM and its applications. However, most of existing RGB-D SLAM methods assume that the traversed environments are static during the SLAM process. This is because moving objects in dynamic environments can severely degrade the SLAM performance. The static world assumption limits the applications of RGB-D SLAM in dynamic environments. In order to address this problem, we proposed a novel RGB-D data-based motion removal approach and integrated it into the front end of RGB-D SLAM. The motion removal approach acted as a pre-processing stage to filter out data that were associated with moving objects. We conducted experiments using a public RGB-D dataset. The results demonstrated that the proposed motion removal approach was able to effectively improve RGB-D SLAM in various challenging dynamic environments. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:110 / 122
页数:13
相关论文
共 50 条
  • [31] Robust RGB-D SLAM in Dynamic Environments using Geometry and Semantic Information
    Xiao, Yao
    Zou, Junjie
    Jin, Ronghe
    Mei, Tiancan
    2024 IEEE 18TH INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION, ICCA 2024, 2024, : 731 - 736
  • [32] GMSK-SLAM: a new RGB-D SLAM method with dynamic areas detection towards dynamic environments
    Wei, Hongyu
    Zhang, Tao
    Zhang, Liang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (21-23) : 31729 - 31751
  • [33] GMSK-SLAM: a new RGB-D SLAM method with dynamic areas detection towards dynamic environments
    Hongyu Wei
    Tao Zhang
    Liang Zhang
    Multimedia Tools and Applications, 2021, 80 : 31729 - 31751
  • [34] Motion Segmentation based Robust RGB-D SLAM
    Wang, Youbing
    Huang, Shoudong
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 3122 - 3127
  • [35] PLPD-SLAM: Point-Line-Plane-based RGB-D SLAM for Dynamic Environments
    Dong, Juan
    Lu, Maobin
    Xu, Yong
    Deng, Fang
    Chen, Jie
    2024 IEEE 18TH INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION, ICCA 2024, 2024, : 719 - 724
  • [36] MSSD-SLAM: Multifeature Semantic RGB-D Inertial SLAM With Structural Regularity for Dynamic Environments
    Wang, Yanan
    Tian, Yaobin
    Chen, Jiawei
    Chen, Cheng
    Xu, Kun
    Ding, Xilun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [37] RGB-D SLAM in indoor dynamic environments with two channels based on scenario classification
    Zhou, Yao
    Tao, Fazhan
    Fu, Zhumu
    Chen, Qihong
    Zhu, Longlong
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (11)
  • [38] Multi-Mask Fusion-Based RGB-D SLAM in Dynamic Environments
    Gao Y.
    Hu M.
    Chen B.
    Yang W.
    Wang J.
    Wang J.
    IEEE Sensors Journal, 2024, 24 (21) : 1 - 1
  • [39] A Compatible Framework for RGB-D SLAM in Dynamic Scenes
    Zhao, Lili
    Liu, Zhili
    Chen, Jianwen
    Cai, Weitong
    Wang, Wenyi
    Zeng, Liaoyuan
    IEEE ACCESS, 2019, 7 : 75604 - 75614
  • [40] Dynamic Objects Recognizing and Masking for RGB-D SLAM
    Li, Xiangcheng
    Wu, Huaiyu
    Chen, Zhihuan
    2021 4TH INTERNATIONAL CONFERENCE ON INTELLIGENT AUTONOMOUS SYSTEMS (ICOIAS 2021), 2021, : 169 - 174