Single-photon non-linear optics with a quantum dot in a waveguide

被引:186
作者
Javadi, A. [1 ]
Sollner, I. [1 ]
Arcari, M. [1 ]
Hansen, S. Lindskov [1 ]
Midolo, L. [1 ]
Mahmoodian, S. [1 ]
Kirsanske, G. [1 ]
Pregnolato, T. [1 ]
Lee, E. H. [2 ]
Song, J. D. [2 ]
Stobbe, S. [1 ]
Lodahl, P. [1 ]
机构
[1] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark
[2] Korea Inst Sci & Technol, Ctr Optoelect Convergence Syst, Seoul 136791, South Korea
来源
NATURE COMMUNICATIONS | 2015年 / 6卷
基金
欧洲研究理事会;
关键词
TRAPPED ATOM; COMPUTATION; BLOCKADE; CAVITY; LIGHT; FIBER; GATE;
D O I
10.1038/ncomms9655
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Strong non-linear interactions between photons enable logic operations for both classical and quantum-information technology. Unfortunately, non-linear interactions are usually feeble and therefore all-optical logic gates tend to be inefficient. A quantum emitter deterministically coupled to a propagating mode fundamentally changes the situation, since each photon inevitably interacts with the emitter, and highly correlated many-photon states may be created. Here we show that a single quantum dot in a photonic-crystal waveguide can be used as a giant non-linearity sensitive at the single-photon level. The non-linear response is revealed from the intensity and quantum statistics of the scattered photons, and contains contributions from an entangled photon-photon bound state. The quantum non-linearity will find immediate applications for deterministic Bell-state measurements and single-photon transistors and paves the way to scalable waveguide-based photonic quantum-computing architectures.
引用
收藏
页数:5
相关论文
共 37 条
  • [1] Near-Unity Coupling Efficiency of a Quantum Emitter to a Photonic Crystal Waveguide
    Arcari, M.
    Sollner, I.
    Javadi, A.
    Hansen, S. Lindskov
    Mahmoodian, S.
    Liu, J.
    Thyrrestrup, H.
    Lee, E. H.
    Song, J. D.
    Stobbe, S.
    Lodahl, P.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (09)
  • [2] Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime
    Auffeves-Garnier, Alexia
    Simon, Christoph
    Gerard, Jean-Michel
    Poizat, Jean-Philippe
    [J]. PHYSICAL REVIEW A, 2007, 75 (05):
  • [3] Photon blockade in an optical cavity with one trapped atom
    Birnbaum, KM
    Boca, A
    Miller, R
    Boozer, AD
    Northup, TE
    Kimble, HJ
    [J]. NATURE, 2005, 436 (7047) : 87 - 90
  • [4] Crystallization of strongly interacting photons in a nonlinear optical fibre
    Chang, D. E.
    Gritsev, V.
    Morigi, G.
    Vuletic, V.
    Lukin, M. D.
    Demler, E. A.
    [J]. NATURE PHYSICS, 2008, 4 (11) : 884 - 889
  • [5] A single-photon transistor using nanoscale surface plasmons
    Chang, Darrick E.
    Sorensen, Anders S.
    Demler, Eugene A.
    Lukin, Mikhail D.
    [J]. NATURE PHYSICS, 2007, 3 (11) : 807 - 812
  • [6] Chang DE, 2014, NAT PHOTONICS, V8, P685, DOI [10.1038/NPHOTON.2014.192, 10.1038/nphoton.2014.192]
  • [7] Scalable photonic quantum computation through cavity-assisted interactions
    Duan, LM
    Kimble, HJ
    [J]. PHYSICAL REVIEW LETTERS, 2004, 92 (12) : 127902 - 1
  • [8] Coherent Interaction of Light and Single Molecules in a Dielectric Nanoguide
    Faez, Sanli
    Tuerschmann, Pierre
    Haakh, Harald R.
    Goetzinger, Stephan
    Sandoghdar, Vahid
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (21)
  • [9] Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade
    Faraon, Andrei
    Fushman, Ilya
    Englund, Dirk
    Stoltz, Nick
    Petroff, Pierre
    Vuckovic, Jelena
    [J]. NATURE PHYSICS, 2008, 4 (11) : 859 - 863
  • [10] Gibbs H.M., 1985, Optical Bistability: Controlling Light with Light