Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices

被引:1393
作者
Gao, Min-Rui [1 ]
Xu, Yun-Fei [1 ]
Jiang, Jun [1 ]
Yu, Shu-Hong [1 ]
机构
[1] Univ Sci & Technol China, Div Nanomat & Chem, Hefei Natl Lab Phys Sci Microscale, Dept Chem,Natl Synchrotron Radiat Lab, Hefei 230026, Peoples R China
基金
对外科技合作项目(国际科技项目); 中国国家自然科学基金;
关键词
OXYGEN REDUCTION REACTION; GRAPHENE-BASED MATERIALS; SENSITIZED SOLAR-CELLS; LARGE-SCALE SYNTHESIS; ONE-STEP SYNTHESIS; ONE-POT SYNTHESIS; SUPPORTED COSE2 NANOPARTICLES; ORGANIC HYBRID SEMICONDUCTOR; SHAPE-CONTROLLED SYNTHESIS; LOW-TEMPERATURE SYNTHESIS;
D O I
10.1039/c2cs35310e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Advanced energy conversion and storage (ECS) devices (including fuel cells, photoelectrochemical water splitting cells, solar cells, Li-ion batteries and supercapacitors) are expected to play a major role in the development of sustainable technologies that alleviate the energy and environmental challenges we are currently facing. The successful utilization of ECS devices depends critically on synthesizing new nanomaterials with merits of low cost, high efficiency, and outstanding properties. Recent progress has demonstrated that nanostructured metal chalcogenides (MCs) are very promising candidates for efficient ECS systems based on their unique physical and chemical properties, such as conductivity, mechanical and thermal stability and cyclability. In this review, we aim to provide a summary on the liquid-phase synthesis, modifications, and energy-related applications of nanostructured metal chalcogenide (MC) materials. The liquid-phase syntheses of various MC nanomaterials are primarily categorized with the preparation method (mainly 15 kinds of methods). To obtain optimized, enhanced or even new properties, the nanostructured MC materials can be modified by other functional nanomaterials such as carbon-based materials, noble metals, metal oxides, or MCs themselves. Thus, this review will then be focused on the recent strategies used to realize the modifications of MC nanomaterials. After that, the ECS applications of the MC/modified-MC nanomaterials have been systematically summarized based on a great number of successful cases. Moreover, remarks on the challenges and perspectives for future MC research are proposed (403 references).MC/modified-MC
引用
收藏
页码:2986 / 3017
页数:32
相关论文
共 403 条
  • [11] Synthesis of a highly ordered single-crystalline Bi2S3 nanowire array and its metal/semiconductor/metal back-to-back Schottky diode
    Bao, Haifeng
    Li, Chang Ming
    Cui, Xiaoqiang
    Gan, Ye
    Song, Qunliang
    Guo, Jun
    [J]. SMALL, 2008, 4 (08) : 1125 - 1129
  • [12] Hydrothermal transformation from Au core-sulfide shell to Au nanoparticle-decorated sulfide hybrid nanostructures
    Bao, Zhihong
    Sun, Zhenhua
    Xiao, Manda
    Tian, Linwei
    Wang, Jianfang
    [J]. NANOSCALE, 2010, 2 (09) : 1650 - 1652
  • [13] SnSe Nanocrystals: Synthesis, Structure, Optical Properties, and Surface Chemistry
    Baumgardner, William J.
    Choi, Joshua J.
    Lim, Yee-Fun
    Hanrath, Tobias
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (28) : 9519 - 9521
  • [14] ELECTROCATALYTIC OXYGEN REDUCTION WITH THIOSPINELS AND OTHER SULFIDES OF TRANSITION-METALS
    BEHRET, H
    BINDER, H
    SANDSTEDE, G
    [J]. ELECTROCHIMICA ACTA, 1975, 20 (02) : 111 - 117
  • [15] Formation of Ag2Se nanotubes and dendrite-like structures from UV irradiation of a CSe2/Ag colloidal solution
    Bernard Ng, Choon Hwee
    Tan, Hua
    Fan, Wai Yip
    [J]. LANGMUIR, 2006, 22 (23) : 9712 - 9717
  • [16] Air Stable, Photosensitive, Phase Pure Iron Pyrite Nanocrystal Thin Films for Photovoltaic Application
    Bi, Yu
    Yuan, Yongbo
    Exstrom, Christopher L.
    Darveau, Scott A.
    Huang, Jinsong
    [J]. NANO LETTERS, 2011, 11 (11) : 4953 - 4957
  • [17] Microwave chemistry for inorganic nanomaterials synthesis
    Bilecka, Idalia
    Niederberger, Markus
    [J]. NANOSCALE, 2010, 2 (08) : 1358 - 1374
  • [18] Hydrogen evolution on nano-particulate transition metal sulfides
    Bonde, Jacob
    Moses, Poul G.
    Jaramillo, Thomas F.
    Norskov, Jens K.
    Chorkendorff, Ib
    [J]. FARADAY DISCUSSIONS, 2008, 140 : 219 - 231
  • [19] Bouroushian M, 2010, MONOGR ELECTROCHEM, P1, DOI 10.1007/978-3-642-03967-6
  • [20] Nanomaterials for rechargeable lithium batteries
    Bruce, Peter G.
    Scrosati, Bruno
    Tarascon, Jean-Marie
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) : 2930 - 2946