Ito formula for free stochastic integrals

被引:15
作者
Anshelevich, M [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jfan.2001.3849
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The objects under investigation are the stochastic integrals with respect to free Levy processes. We define such integrals for square-integrable integrands, as well as for a certain general class of bounded integrands. Using the product form of the Ito formula. we prove the full functional Ito formula in this context. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:292 / 315
页数:24
相关论文
共 12 条
[1]   Free stochastic measures via noncrossing partitions [J].
Anshelevich, M .
ADVANCES IN MATHEMATICS, 2000, 155 (01) :154-179
[2]  
ANSHELEVICH M, IN PRESS PACIFIC J M
[3]  
BARNDORFFNIELSE.OE, 2000, SELF DECOMPOSABILITY
[4]   Stochastic calculus with respect to free Brownian motion and analysis on Wigner space [J].
Biane, P ;
Speicher, R .
PROBABILITY THEORY AND RELATED FIELDS, 1998, 112 (03) :373-409
[5]  
CABANALDUVILLAR.T, 2000, 0003 ENS DMA
[6]  
CABANALDUVILLAR.T, 1999, FLUCTUATIONS LOI EMP
[7]  
PARTHASARATHY KR, 1992, CR ACAD SCI I-MATH, V315, P1417
[8]  
Rota GC, 1997, ANN PROBAB, V25, P1257
[9]   The coalgebra of the free difference quotient and free probability [J].
Voiculescu, D .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2000, 2000 (02) :79-106
[10]   ADDITION OF CERTAIN NON-COMMUTING RANDOM-VARIABLES [J].
VOICULESCU, D .
JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 66 (03) :323-346