Interactive Scene Segmentation for Efficient Human-in-the-Loop Robot Manipulation

被引:0
|
作者
Butler, Daniel J. [1 ]
Elliot, Sarah [1 ]
Cakmak, Maya [1 ]
机构
[1] Univ Washington, Comp Sci & Engn, 185 Stevens Way, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
While there has been tremendous progress in autonomous robot manipulation, environments with clutter and unknown objects remain challenging particularly for the perception algorithms that support manipulation. This paper adopts a human-aided perception paradigm and investigates alternative interactive segmentation methods to allow users to segment a target object or object part. Through a first user study (N=24) we compare four interactive segmentation methods and characterize the tradeoff between efficiency and accuracy. Next we develop a hybrid segmentation interface and integrate it into an end-to-end human-in-the-loop manipulation system. In a second user study (N=12) we compare the performance of this system to a direct gripper-control system that allows similar manipulation tasks to be performed in challenging scenes. We find that this system enables more efficient manipulation with a lower mental load on the user, while offering a similar task success rate.
引用
收藏
页码:2572 / 2579
页数:8
相关论文
共 50 条
  • [11] To ask for help or not to ask: A predictive approach to human-in-the-loop motion planning for robot manipulation tasks
    Papallas, Rafael
    Dogar, Mehmet R.
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 649 - 656
  • [12] Semantic SLAM for Mobile Robot with Human-in-the-Loop
    Ouyang, Zhenchao
    Zhang, Changjie
    Cui, Jiahe
    COLLABORATIVE COMPUTING: NETWORKING, APPLICATIONS AND WORKSHARING, COLLABORATECOM 2022, PT II, 2022, 461 : 289 - 305
  • [13] Non-Prehensile Manipulation in Clutter with Human-In-The-Loop
    Papallas, Rafael
    Dogar, Mehmet R.
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 6723 - 6729
  • [14] Human-in-the-Loop Robotic Manipulation Planning for Collaborative Assembly
    Raessa, Mohamed
    Chen, Jimmy Chi Yin
    Wan, Weiwei
    Harada, Kensuke
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2020, 17 (04) : 1800 - 1813
  • [15] Human-in-the-Loop Approach for Enhanced Mobile Robot Navigation
    Omer, Karameldeen
    Ferracuti, Francesco
    Freddi, Alessandro
    Iarlori, Sabrina
    Monteriu, Andrea
    Porcaro, Camillo
    2022 IEEE INTERNATIONAL CONFERENCE ON METROLOGY FOR EXTENDED REALITY, ARTIFICIAL INTELLIGENCE AND NEURAL ENGINEERING (METROXRAINE), 2022, : 416 - 421
  • [16] Robot Task Control Utilizing Human-in-the-loop Perception
    Yu, Wonpil
    Lee, Jae-Yeong
    Chae, Heesung
    Han, Kyuseo
    Lee, Yucheol
    Jang, Minsu
    2008 17TH IEEE INTERNATIONAL SYMPOSIUM ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION, VOLS 1 AND 2, 2008, : 395 - 400
  • [17] Natural teaching for humanoid robot via human-in-the-loop scene-motion cross-modal perception
    Xu, Wenbin
    Li, Xudong
    Gong, Liang
    Huang, Yixiang
    Zheng, Zeyuan
    Zhao, Zelin
    Zhao, Lujie
    Chen, Binhao
    Yang, Haozhe
    Cao, Li
    Liu, Chengliang
    INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION, 2019, 46 (03): : 404 - 414
  • [18] An Attentional Approach to Human–Robot Interactive Manipulation
    Xavier Broquère
    Alberto Finzi
    Jim Mainprice
    Silvia Rossi
    Daniel Sidobre
    Mariacarla Staffa
    International Journal of Social Robotics, 2014, 6 : 533 - 553
  • [19] Human-in-the-Loop: MPC for Shared Control of a Quadruped Rescue Robot
    Chipalkatty, Rahul
    Daepp, Hannes
    Egerstedt, Magnus
    Book, Wayne
    2011 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2011, : 4556 - 4561
  • [20] Human-in-the-Loop Video Semantic Segmentation Auto-Annotation
    Qiao, Nan
    Sun, Yuyin
    Liu, Chong
    Xia, Lu
    Luo, Jiajia
    Zhang, Ke
    Kuo, Cheng-Hao
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 5870 - 5880