Interactive Scene Segmentation for Efficient Human-in-the-Loop Robot Manipulation

被引:0
|
作者
Butler, Daniel J. [1 ]
Elliot, Sarah [1 ]
Cakmak, Maya [1 ]
机构
[1] Univ Washington, Comp Sci & Engn, 185 Stevens Way, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
While there has been tremendous progress in autonomous robot manipulation, environments with clutter and unknown objects remain challenging particularly for the perception algorithms that support manipulation. This paper adopts a human-aided perception paradigm and investigates alternative interactive segmentation methods to allow users to segment a target object or object part. Through a first user study (N=24) we compare four interactive segmentation methods and characterize the tradeoff between efficiency and accuracy. Next we develop a hybrid segmentation interface and integrate it into an end-to-end human-in-the-loop manipulation system. In a second user study (N=12) we compare the performance of this system to a direct gripper-control system that allows similar manipulation tasks to be performed in challenging scenes. We find that this system enables more efficient manipulation with a lower mental load on the user, while offering a similar task success rate.
引用
收藏
页码:2572 / 2579
页数:8
相关论文
共 50 条
  • [1] Interactive Human-in-the-loop Coordination of Manipulation Skills Learned from Demonstration
    Guo, Meng
    Buerger, Mathias
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, : 7292 - 7298
  • [2] Human-in-the-Loop Embodied Intelligence With Interactive Simulation Environment for Surgical Robot Learning
    Long, Yonghao
    Wei, Wang
    Huang, Tao
    Wang, Yuehao
    Dou, Qi
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (08) : 4441 - 4448
  • [3] Human-in-the-loop image segmentation and annotation
    Xiaoya Zhang
    Lianjie Wang
    Jin Xie
    Pengfei Zhu
    Science China Information Sciences, 2020, 63
  • [4] Human-in-the-loop image segmentation and annotation
    Xiaoya ZHANG
    Lianjie WANG
    Jin XIE
    Pengfei ZHU
    Science China(Information Sciences), 2020, 63 (11) : 290 - 292
  • [5] Human-in-the-loop image segmentation and annotation
    Zhang, Xiaoya
    Wang, Lianjie
    Xie, Jin
    Zhu, Pengfei
    SCIENCE CHINA-INFORMATION SCIENCES, 2020, 63 (11)
  • [6] A haptic interface for human-in-the-loop manipulation at the nanoscale
    Tan, HZ
    Reifenberger, R
    Chiu, G
    Walker, L
    Mahadoo, S
    Raman, A
    World Haptics Conference: First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virutual Environment and Teleoperator Systems, Proceedings, 2005, : 271 - 276
  • [7] Human-in-the-Loop Segmentation of Earth Surface Imagery
    Buscombe, D.
    Goldstein, E. B.
    Sherwood, C. R.
    Bodine, C.
    Brown, J. A.
    Favela, J.
    Fitzpatrick, S.
    Kranenburg, C. J.
    Over, J. R.
    Ritchie, A. C.
    Warrick, J. A.
    Wernette, P.
    EARTH AND SPACE SCIENCE, 2022, 9 (03)
  • [8] Troubleshooting image segmentation models with human-in-the-loop
    Haotao Wang
    Tianlong Chen
    Zhangyang Wang
    Kede Ma
    Machine Learning, 2023, 112 : 1033 - 1051
  • [9] On human-in-the-loop optimization of human-robot interaction
    Slade, Patrick
    Atkeson, Christopher
    Donelan, J. Maxwell
    Houdijk, Han
    Ingraham, Kimberly A.
    Kim, Myunghee
    Kong, Kyoungchul
    Poggensee, Katherine L.
    Riener, Robert
    Steinert, Martin
    Zhang, Juanjuan
    Collins, Steven H.
    NATURE, 2024, 633 (8031) : 779 - 788
  • [10] Troubleshooting image segmentation models with human-in-the-loop
    Wang, Haotao
    Chen, Tianlong
    Wang, Zhangyang
    Ma, Kede
    MACHINE LEARNING, 2023, 112 (03) : 1033 - 1051