EVALUATION OF VISION-BASED LOCALIZATION AND MAPPING TECHNIQUES IN A SUBSEA METROLOGY SCENARIO

被引:2
作者
Menna, F. [1 ]
Torresani, A. [2 ]
Nocerino, E. [3 ,4 ]
Nawaf, M. M. [3 ]
Seinturier, J. [1 ]
Remondino, F. [2 ]
Drap, P. [3 ]
Chemisky, B. [1 ]
机构
[1] COMEX SA, Innovat Dept, COMEX, 36 Bd Ocean,CS 80143, F-13275 Marseille, France
[2] Bruno Kessler Fdn FBK, 3D Opt Metrol 3DOM Unit, Trento, Italy
[3] Aix Marseille Univ, CNRS, ENSAM, Univ Toulon,LIS UMR 7020, Domaine Univ St Jerome,Batiment Polytech, F-13397 Marseille, France
[4] Swiss Fed Inst Technol, Inst Theoret Phys, CH-8093 Zurich, Switzerland
来源
UNDERWATER 3D RECORDING AND MODELLING: A TOOL FOR MODERN APPLICATIONS AND CH RECORDING | 2019年 / 42-2卷 / W10期
关键词
Underwater photogrammetry; SLAM; visual odometry; subsea metrology; ROV; deep underwater exploration; deformation analysis; accuracy evaluation; NAVIGATION; SLAM;
D O I
10.5194/isprs-archives-XLII-2-W10-127-2019
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Metrology is fundamental in all the applications that require to qualify, verify and validate measured data according to standards or, in other words, to assess their compliance with predefined tolerances. At sea, metrology is commonly associated with the process of measuring underwater structures, mainly pipeline elements widely used in offshore industry. Subsea operations are very expensive; optimizing time and money resources are the core factors driving innovation in the subsea metrology industry. In this study, the authors investigate the use of state-of-art vision-based algorithms, i.e. ORB-SLAM2 and Visual Odometry, as a navigation tool to assist and control a Remotely Operated Vehicle (ROV) while performing subsea metrology operations. In particular, the manuscript will focus on methods for assessing the accuracy of both trajectory and tie points provided by the tested approaches and evaluating whether the preliminary real time reconstruction meets the tolerances defined in typical subsea metrology scenarios.
引用
收藏
页码:127 / 134
页数:8
相关论文
共 32 条
[1]  
[Anonymous], 2003, P IEEE INT C COMP VI
[2]  
[Anonymous], 2017, VIM3241 BIPM
[3]  
Bai Y., 2010, Subsea Engineering Handbook", V1th
[4]   Simultaneous Localization and Mapping: A Survey of Current Trends in Autonomous Driving [J].
Bresson, Guillaume ;
Alsayed, Zayed ;
Yu, Li ;
Glaser, Sebastien .
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2017, 2 (03) :194-220
[5]   A complete system for on-line 3D modelling from acoustic images [J].
Castellani, U ;
Fusiello, A ;
Murino, V ;
Papaleo, L ;
Puppo, E ;
Pittore, M .
SIGNAL PROCESSING-IMAGE COMMUNICATION, 2005, 20 (9-10) :832-852
[6]   Archaeology via Underwater Robots: Mapping and Localization within Maltese Cistern Systems [J].
Clark, Christopher M. ;
Olstad, Christopher S. ;
Buhagiar, Keith ;
Gambin, Timmy .
2008 10TH INTERNATIONAL CONFERENCE ON CONTROL AUTOMATION ROBOTICS & VISION: ICARV 2008, VOLS 1-4, 2008, :662-+
[7]  
Davison A. J, 2015, FUT REAL TIM SLAM 18
[8]   Underwater Photogrammetry and Object Modeling: A Case Study of Xlendi Wreck in Malta [J].
Drap, Pierre ;
Merad, Djamal ;
Hijazi, Bilal ;
Gaoua, Lamia ;
Nawaf, Mohamad Motasem ;
Saccone, Mauro ;
Chemisky, Bertrand ;
Seinturier, Julien ;
Sourisseau, Jean-Christophe ;
Gambin, Timmy ;
Castro, Filipe .
SENSORS, 2015, 15 (12) :30351-30384
[9]   Towards Comparison of Underwater SLAM Methods: An Open Dataset Collection [J].
Duarte, Amanda C. ;
Zaffari, Guilherme B. ;
da Rosa, Romulo Thiago S. ;
Longaray, Lucas M. ;
Drews-, Paulo, Jr. ;
Botelho, Silvia S. C. .
OCEANS 2016 MTS/IEEE MONTEREY, 2016,
[10]   Visually Augmented Navigation for Autonomous Underwater Vehicles [J].
Eustice, Ryan M. ;
Pizarro, Oscar ;
Singh, Hanumant .
IEEE JOURNAL OF OCEANIC ENGINEERING, 2008, 33 (02) :103-122