Incorporation of a viral DNA-packaging motor channel in lipid bilayers for real-time, single-molecule sensing of chemicals and double-stranded DNA

被引:28
作者
Haque, Farzin [1 ,2 ]
Geng, Jia [1 ,2 ]
Montemagno, Carlo [3 ]
Guo, Peixuan [1 ,2 ,4 ]
机构
[1] Univ Kentucky, Coll Pharm, Lexington, KY USA
[2] Univ Kentucky, Nanobiotechnol Ctr, Lexington, KY USA
[3] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB, Canada
[4] Univ Kentucky, Lucille P Markey Canc Ctr, Lexington, KY USA
基金
美国国家卫生研究院;
关键词
WAY VALVE MECHANISM; PHAGE PHI-29; STOCHASTIC DETECTION; CONNECTOR PROTEIN; PORTAL MOTOR; NANOPORE; RNA; NANOPARTICLES; PRNA; DISCRIMINATION;
D O I
10.1038/nprot.2013.001
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Over the past decade, nanopores have rapidly emerged as stochastic biosensors. This protocol describes the cloning, expression and purification of the channel of the bacteriophage phi29 DNA-packaging nanomotor and its subsequent incorporation into lipid membranes for single-pore sensing of double-stranded DNA (dsDNA) and chemicals. The membrane-embedded phi29 nanochannel remains functional and structurally intact under a range of conditions. When ions and macromolecules translocate through this nanochannel, reliable fingerprint changes in conductance are observed. Compared with other well-studied biological pores, the phi29 nanochannel has a larger cross-sectional area, which enables the translocation of dsDNA. Furthermore, specific amino acids can be introduced by site-directed mutagenesis within the large cavity of the channel to conjugate receptors that are able to bind specific ligands or analytes for desired applications. The lipid membrane-embedded nanochannel system has immense potential nanotechnological and biomedical applications in bioreactors, environmental sensing, drug monitoring, controlled drug delivery, early disease diagnosis and high-throughput DNA sequencing. The total time required for completing one round of this protocol is around 1 month.
引用
收藏
页码:373 / 392
页数:20
相关论文
共 85 条
[61]   Structure determination of the head-tail connector of bacteriophage φ29 [J].
Simpson, AA ;
Leiman, PG ;
Tao, YH ;
He, YN ;
Badasso, MO ;
Jardine, PJ ;
Anderson, DL ;
Rossmann, MG .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2001, 57 :1260-1269
[62]   Nanopore Based Sequence Specific Detection of Duplex DNA for Genomic Profiling [J].
Singer, Alon ;
Wanunu, Meni ;
Morrison, Will ;
Kuhn, Heiko ;
Frank-Kamenetskii, Maxim ;
Meller, Amit .
NANO LETTERS, 2010, 10 (02) :738-742
[63]   Salt dependence of ion transport and DNA translocation through solid-state nanopores [J].
Smeets, RMM ;
Keyser, UF ;
Krapf, D ;
Wu, MY ;
Dekker, NH ;
Dekker, C .
NANO LETTERS, 2006, 6 (01) :89-95
[64]   The bacteriophage φ29 portal motor can package DNA against a large internal force [J].
Smith, DE ;
Tans, SJ ;
Smith, SB ;
Grimes, S ;
Anderson, DL ;
Bustamante, C .
NATURE, 2001, 413 (6857) :748-752
[65]   Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore [J].
Song, LZ ;
Hobaugh, MR ;
Shustak, C ;
Cheley, S ;
Bayley, H ;
Gouaux, JE .
SCIENCE, 1996, 274 (5294) :1859-1866
[66]   DNA interacts with Bacillus subtilis mechano-sensitive channels in native membrane patches [J].
Szabò, I ;
Tombola, F ;
Martinucci, S ;
Zoratti, M .
CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2002, 12 (2-3) :127-134
[67]   Self-Assembling Sequence-Adaptive Peptide Nucleic Acids [J].
Ura, Yasuyuki ;
Beierle, John M. ;
Leman, Luke J. ;
Orgel, Leslie E. ;
Ghadiri, M. Reza .
SCIENCE, 2009, 325 (5936) :73-77
[68]  
Venkatesan BM, 2011, NAT NANOTECHNOL, V6, P615, DOI [10.1038/nnano.2011.129, 10.1038/NNANO.2011.129]
[69]  
Venkatesan M., 2009, ADV MATER, V21, P1
[70]   Nanopores with a spark for single-molecule detection [J].
Wang, H ;
Branton, D .
NATURE BIOTECHNOLOGY, 2001, 19 (07) :622-623