Overexpression of OrbHLH001, a putative helix-loop-helix transcription factor, causes increased expression of AKT1 and maintains ionic balance under salt stress in rice

被引:54
作者
Chen, Yuan [1 ,2 ]
Li, Fei [1 ,2 ]
Ma, Yan [1 ,2 ]
Chong, Kang [1 ]
Xu, Yunyuan [1 ]
机构
[1] Chinese Acad Sci, Inst Bot, Key Lab Plant Mol Physiol, Beijing 100093, Peoples R China
[2] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China
关键词
OrbHLH001; Transcription factors; Ion flux; E-box; Salt tolerance; K+ CHANNEL; TRANSGENIC RICE; TOLERANCE; COLD; GENE; DROUGHT; DOMAIN; DEHYDRATION; REGULATOR; RESPONSES;
D O I
10.1016/j.jplph.2012.08.019
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The basic helix-loop-helix family of proteins, which function as transcription factors, have been intensively studied in plants and animals. However, the molecular mechanism of these factors contributing to stress tolerance is unknown. Here, We report on the overexpression of OrbHLH001 from Dongxiang wild rice (Oryza rufipogon) conferring salt tolerance in transgenic rice plants. The expression of OrbHLH001 was tissue specific, mainly in phloem tissues throughout the plant. Ion assay with the scanning ion-selective electrode technique showed that NaCl stress has a greater influence on Na+ efflux and K+ influx in OrbHLH001-overexpressed plants than the wild type. OrbHLH001 protein can induce the expression of OsAKT1 to regulate the Na+/K+ ratio in OrbHLH001-overexpressed plants by specifically binding to an E-box motif in the promoter region of OsAKT1. The Mechanism may have potential use in rice molecular breeding. (c) 2012 Elsevier GmbH. All rights reserved.
引用
收藏
页码:93 / 100
页数:8
相关论文
共 46 条
[1]   Expression of the AKT1-type K+ channel gene from Puccinellia tenuiflora, PutAKT1, enhances salt tolerance in Arabidopsis [J].
Ardie, Sintho Wahyuning ;
Liu, Shenkui ;
Takano, Tetsuo .
PLANT CELL REPORTS, 2010, 29 (08) :865-874
[2]   Fumonisin B1-induced cell death in Arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways [J].
Asai, T ;
Stone, JM ;
Heard, JE ;
Kovtun, Y ;
Yorgey, P ;
Sheen, J ;
Ausubel, FM .
PLANT CELL, 2000, 12 (10) :1823-1835
[3]   Plant responses to potassium deficiencies: a role for potassium transport proteins [J].
Ashley, MK ;
Grant, M ;
Grabov, A .
JOURNAL OF EXPERIMENTAL BOTANY, 2006, 57 (02) :425-436
[4]   Inventory and functional characterization of the HAK potassium transporters of rice [J].
Bañuelos, MA ;
Garciadeblas, B ;
Cubero, B ;
Rodríguez-Navarro, A .
PLANT PHYSIOLOGY, 2002, 130 (02) :784-795
[5]   A novel system for gene silencing using siRNAs in rice leaf and stem-derived protoplasts [J].
Bart, Rebecca ;
Chern, Mawsheng ;
Park, Chang-Jin ;
Bartley, Laura ;
Ronald, Pamela C. .
PLANT METHODS, 2006, 2 (1)
[6]   Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses [J].
Chen, WQ ;
Provart, NJ ;
Glazebrook, J ;
Katagiri, F ;
Chang, HS ;
Eulgem, T ;
Mauch, F ;
Luan, S ;
Zou, GZ ;
Whitham, SA ;
Budworth, PR ;
Tao, Y ;
Xie, ZY ;
Chen, X ;
Lam, S ;
Kreps, JA ;
Harper, JF ;
Si-Ammour, A ;
Mauch-Mani, B ;
Heinlein, M ;
Kobayashi, K ;
Hohn, T ;
Dangl, JL ;
Wang, X ;
Zhu, T .
PLANT CELL, 2002, 14 (03) :559-574
[7]   ICE1:: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis [J].
Chinnusamy, V ;
Ohta, M ;
Kanrar, S ;
Lee, BH ;
Hong, XH ;
Agarwal, M ;
Zhu, JK .
GENES & DEVELOPMENT, 2003, 17 (08) :1043-1054
[8]   Cold stress regulation of gene expression in plants [J].
Chinnusamy, Viswanathan ;
Zhu, Jianhua ;
Zhu, Jian-Kang .
TRENDS IN PLANT SCIENCE, 2007, 12 (10) :444-451
[9]   Whole genome analysis of the OsGRF gene family encoding plant-specific putative transcription activators in rice (Oryza sativa L.) [J].
Choi, D ;
Kim, JH ;
Kende, H .
PLANT AND CELL PHYSIOLOGY, 2004, 45 (07) :897-904
[10]   STRUCTURE AND FUNCTION OF THE B/HLH/Z DOMAIN OF USF [J].
FERREDAMARE, AR ;
POGNONEC, P ;
ROEDER, RG ;
BURLEY, SK .
EMBO JOURNAL, 1994, 13 (01) :180-189