Machine learning-assisted design of porous carbons for removing paracetamol from aqueous solutions

被引:8
|
作者
Kowalczyk, Piotr [1 ]
Terzyk, Artur P. [2 ]
Erwardt, Paulina [2 ]
Hough, Michael [1 ]
Deditius, Artur P. [1 ,3 ]
Gauden, Piotr A. [4 ]
Neimark, Alexander, V [5 ]
Kaneko, Katsumi [6 ]
机构
[1] Murdoch Univ, Coll Sci Hlth Engn & Educ, Murdoch, WA 6150, Australia
[2] Nicolaus Copernicus Univ Torun, Fac Chem, Physicochem Carbon Mat Res Grp, Gagarin St 7, PL-787100 Torun, Poland
[3] Univ Western Australia, Sch Earth Sci, Perth, WA 6009, Australia
[4] Nicolaus Copernicus Univ Torun, Fac Chem, Carbon Mat Applicat Electrochem & Environm Protec, Gagarin St 7, PL-87100 Torun, Poland
[5] Rutgers State Univ, Dept Chem & Biochem Engn, 98 Brett Rd, Piscataway, NJ 08854 USA
[6] Shinshu Univ, Ctr Energy & Environm Sci, Nagano 3808553, Japan
关键词
ADSORPTION; GRAPHENE; OPTIMIZATION; MODELS; GASES; FIBER;
D O I
10.1016/j.carbon.2022.07.029
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To accelerate the design and production of porous carbons targeting desired performance characteristics, we propose to incorporate machine learning (ML) regression into pore size distribution (PSD) analysis. Here, we implemented a ML algorithm for predicting paracetamol adsorption capacity of porous carbons from two pore structure parameters: total surface area and surface area of supermicropores-mesopores. These structural parameters of porous carbons are accessible from the software provided with automatic volumetric gas adsorption analyzers. It was shown that theoretical paracetamol capacities of porous carbons predicted using the ML algorithm lies within the range of experimental uncertainty. Nanoporous carbon beads with a high surface area of supermicropores (997 m(2)/g) and mesopores (628 m(2)/g) had the highest adsorption capacity of paracetamol (experiment: 480 +/- 24 mg/g, ML predicted: 498 mg/g). The novel strategy for designing of porous carbon adsorbents using ML-PSD approach has a great potential to facilitate production of novel carbon adsorbents optimized for purification of aqueous solutions from non-electrolyte contaminates.
引用
收藏
页码:371 / 381
页数:11
相关论文
共 50 条
  • [41] Machine learning-assisted microscopic public transportation simulation: Two coupling strategies
    Delhoum, Younes
    Cardin, Olivier
    Nouiri, Maroua
    Harzallah, Mounira
    SIMULATION MODELLING PRACTICE AND THEORY, 2024, 137
  • [42] Machine Learning-Assisted Approach for Optimizing Step Size of Hill Climbing Algorithm
    Szenasi, Sandor
    Legradit, Gabor
    Vight, Balazs
    18TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS, SACI 2024, 2024, : 425 - 429
  • [43] A theoretical model for adsorption of surfactants from aqueous solutions onto activated carbons
    Rudzinski, W
    Dabrowski, A
    NaiKiewiczMichalek, J
    Podkoscielny, P
    Partyka, S
    POLISH JOURNAL OF CHEMISTRY, 1996, 70 (02) : 231 - 252
  • [44] Machine learning for the design and discovery of zeolites and porous crystalline materials
    Gandhi, Akhilesh
    Hasan, M. M. Faruque
    CURRENT OPINION IN CHEMICAL ENGINEERING, 2022, 35
  • [45] Machine learning-assisted optimization and evaluation of methylene blue adsorption kinetics on citrus aurantifolia leaves: Insights from isotherm and thermodynamic studies
    Zain, Nimra Saher
    Mahmoud, M. H. H.
    Khan, Muhammad Imran
    Zafar, Farhan
    Manzoor, Surryia
    Akhtar, Naeem
    Khan, Muhammad Ali
    El Azab, Islam H.
    El-Bahy, Zeinhom M.
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2024, 164
  • [46] Surface heterogeneity effects of activated carbons on the kinetics of paracetamol removal from aqueous solution
    Ruiz, B.
    Cabrita, I.
    Mestre, A. S.
    Parra, J. B.
    Pires, J.
    Carvalho, A. P.
    Ania, C. O.
    APPLIED SURFACE SCIENCE, 2010, 256 (17) : 5171 - 5175
  • [47] Insights into CO2 capture in porous carbons from machine learning, experiments and molecular simulation
    Ma, Xiancheng
    Xu, Wenjun
    Su, Rongkui
    Shao, Lishu
    Zeng, Zheng
    Li, Liqing
    Wang, Hanqing
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 306
  • [48] Ordered Mesoporous Carbons for Adsorption of Paracetamol and Non-Steroidal Anti-Inflammatory Drugs: Ibuprofen and Naproxen from Aqueous Solutions
    Jedynak, Katarzyna
    Szczepanik, Beata
    Redzia, Nina
    Slomkiewicz, Piotr
    Kolbus, Anna
    Rogala, Pawel
    WATER, 2019, 11 (05)
  • [49] Machine learning-assisted development of polypyrrole-grafted yarns for e-textiles
    Iannacchero, Matteo
    Lofgren, Joakim
    Mohan, Mithila
    Rinke, Patrick
    Vapaavuori, Jaana
    MATERIALS & DESIGN, 2025, 249
  • [50] Machine Learning-Assisted Device Circuit Co-Optimization: A Case Study on Inverter
    Xue, Liyuan
    Dixit, Ankit
    Kumar, Naveen
    Georgiev, Vihar
    Liu, Bo
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2024, 71 (12) : 7256 - 7262