Machine learning-assisted design of porous carbons for removing paracetamol from aqueous solutions

被引:8
|
作者
Kowalczyk, Piotr [1 ]
Terzyk, Artur P. [2 ]
Erwardt, Paulina [2 ]
Hough, Michael [1 ]
Deditius, Artur P. [1 ,3 ]
Gauden, Piotr A. [4 ]
Neimark, Alexander, V [5 ]
Kaneko, Katsumi [6 ]
机构
[1] Murdoch Univ, Coll Sci Hlth Engn & Educ, Murdoch, WA 6150, Australia
[2] Nicolaus Copernicus Univ Torun, Fac Chem, Physicochem Carbon Mat Res Grp, Gagarin St 7, PL-787100 Torun, Poland
[3] Univ Western Australia, Sch Earth Sci, Perth, WA 6009, Australia
[4] Nicolaus Copernicus Univ Torun, Fac Chem, Carbon Mat Applicat Electrochem & Environm Protec, Gagarin St 7, PL-87100 Torun, Poland
[5] Rutgers State Univ, Dept Chem & Biochem Engn, 98 Brett Rd, Piscataway, NJ 08854 USA
[6] Shinshu Univ, Ctr Energy & Environm Sci, Nagano 3808553, Japan
关键词
ADSORPTION; GRAPHENE; OPTIMIZATION; MODELS; GASES; FIBER;
D O I
10.1016/j.carbon.2022.07.029
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To accelerate the design and production of porous carbons targeting desired performance characteristics, we propose to incorporate machine learning (ML) regression into pore size distribution (PSD) analysis. Here, we implemented a ML algorithm for predicting paracetamol adsorption capacity of porous carbons from two pore structure parameters: total surface area and surface area of supermicropores-mesopores. These structural parameters of porous carbons are accessible from the software provided with automatic volumetric gas adsorption analyzers. It was shown that theoretical paracetamol capacities of porous carbons predicted using the ML algorithm lies within the range of experimental uncertainty. Nanoporous carbon beads with a high surface area of supermicropores (997 m(2)/g) and mesopores (628 m(2)/g) had the highest adsorption capacity of paracetamol (experiment: 480 +/- 24 mg/g, ML predicted: 498 mg/g). The novel strategy for designing of porous carbon adsorbents using ML-PSD approach has a great potential to facilitate production of novel carbon adsorbents optimized for purification of aqueous solutions from non-electrolyte contaminates.
引用
收藏
页码:371 / 381
页数:11
相关论文
共 50 条
  • [31] Machine Learning-Assisted Preoperative Diagnosis of Infection Stones in Urolithiasis Patients
    Chen, TingTing
    Zhang, YiFan
    Dou, QuanLiang
    Zheng, XiaoHan
    Wang, FuSang
    Zou, JianJun
    Jia, RuiPeng
    JOURNAL OF ENDOUROLOGY, 2022, 36 (08) : 1091 - 1098
  • [32] Machine learning implemented exploration of the adsorption mechanism of carbon dioxide onto porous carbons
    Namdeo, Sarvesh
    Srivastava, Vimal Chandra
    Mohanty, Paritosh
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 647 : 174 - 187
  • [33] Machine learning-assisted check dam planning on the Chinese Loess Plateau
    Fan, Rui
    Fang, Nufang
    Zeng, Yi
    Zong, Renjie
    Wang, Qiong
    Zhang, Yi
    Shi, Zhihua
    JOURNAL OF HYDROLOGY, 2025, 656
  • [34] Comparison of adsorption and photo-Fenton processes for phenol and paracetamol removing from aqueous solutions: Single and binary systems
    Rad, Leila Roshanfekr
    Haririan, Ismaeil
    Divsar, Faten
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2015, 136 : 423 - 428
  • [35] Rational design of in-situ-modified resorcinol formaldehyde aerogels for removing chlortetracycline antibiotics from aqueous solutions
    Behzadi, Alireza
    Motlagh, Ghodratollah Hashemi
    Raef, Mohammad
    Motahari, Siamak
    POLYMER ENGINEERING AND SCIENCE, 2022, 62 (04) : 1205 - 1222
  • [36] Machine learning-assisted adsorption capacity prediction of ion exchange or chelate resin for heavy metals in aqueous solutions: External validation via multi-factor experiments
    Xu, Mujian
    Zhang, Lingxing
    Yuan, Ling
    Ji, Chenghan
    Zhang, Yueqing
    Kong, Deyang
    Zhang, Yanyang
    Lv, Lu
    Hua, Ming
    Zhang, Weiming
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 368
  • [37] Trichloroethylene adsorption from aqueous solutions by activated carbons
    Tamara A. Krasnova
    Oxana V. Belyaeva
    Alena K. Gorelkina
    Irina V. Timoshchuk
    Natalia V. Gora
    Nadezhda S. Golubeva
    Carbon Letters, 2020, 30 : 281 - 287
  • [38] Machine Learning-Assisted Array Synthesis Using Active Base Element Modeling
    Wu, Qi
    Chen, Weiqi
    Yu, Chen
    Wang, Haiming
    Hong, Wei
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2022, 70 (07) : 5054 - 5065
  • [39] Machine Learning-assisted Computational Steering of Large-scale Scientific Simulations
    Liu, Wuji
    Ye, Qianwen
    Wu, Chase Q.
    Liu, Yangang
    Zhou, Xin
    Shan, Yunpeng
    19TH IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED PROCESSING WITH APPLICATIONS (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2021), 2021, : 984 - 992
  • [40] Trichloroethylene adsorption from aqueous solutions by activated carbons
    Krasnova, Tamara A.
    Belyaeva, Oxana, V
    Gorelkina, Alena K.
    Timoshchuk, Irina, V
    Gora, Natalia, V
    Golubeva, Nadezhda S.
    CARBON LETTERS, 2020, 30 (03) : 281 - 287