Machine learning-assisted design of porous carbons for removing paracetamol from aqueous solutions

被引:8
|
作者
Kowalczyk, Piotr [1 ]
Terzyk, Artur P. [2 ]
Erwardt, Paulina [2 ]
Hough, Michael [1 ]
Deditius, Artur P. [1 ,3 ]
Gauden, Piotr A. [4 ]
Neimark, Alexander, V [5 ]
Kaneko, Katsumi [6 ]
机构
[1] Murdoch Univ, Coll Sci Hlth Engn & Educ, Murdoch, WA 6150, Australia
[2] Nicolaus Copernicus Univ Torun, Fac Chem, Physicochem Carbon Mat Res Grp, Gagarin St 7, PL-787100 Torun, Poland
[3] Univ Western Australia, Sch Earth Sci, Perth, WA 6009, Australia
[4] Nicolaus Copernicus Univ Torun, Fac Chem, Carbon Mat Applicat Electrochem & Environm Protec, Gagarin St 7, PL-87100 Torun, Poland
[5] Rutgers State Univ, Dept Chem & Biochem Engn, 98 Brett Rd, Piscataway, NJ 08854 USA
[6] Shinshu Univ, Ctr Energy & Environm Sci, Nagano 3808553, Japan
关键词
ADSORPTION; GRAPHENE; OPTIMIZATION; MODELS; GASES; FIBER;
D O I
10.1016/j.carbon.2022.07.029
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To accelerate the design and production of porous carbons targeting desired performance characteristics, we propose to incorporate machine learning (ML) regression into pore size distribution (PSD) analysis. Here, we implemented a ML algorithm for predicting paracetamol adsorption capacity of porous carbons from two pore structure parameters: total surface area and surface area of supermicropores-mesopores. These structural parameters of porous carbons are accessible from the software provided with automatic volumetric gas adsorption analyzers. It was shown that theoretical paracetamol capacities of porous carbons predicted using the ML algorithm lies within the range of experimental uncertainty. Nanoporous carbon beads with a high surface area of supermicropores (997 m(2)/g) and mesopores (628 m(2)/g) had the highest adsorption capacity of paracetamol (experiment: 480 +/- 24 mg/g, ML predicted: 498 mg/g). The novel strategy for designing of porous carbon adsorbents using ML-PSD approach has a great potential to facilitate production of novel carbon adsorbents optimized for purification of aqueous solutions from non-electrolyte contaminates.
引用
收藏
页码:371 / 381
页数:11
相关论文
共 50 条
  • [21] Machine Learning-Assisted Computational Screening of Adhesive Molecules Derived from Dihydroxyphenyl Alanine
    Vuppala, Srimai
    Chitumalla, Ramesh Kumar
    Choi, Seyong
    Kim, Taeho
    Park, Hwangseo
    Jang, Joonkyung
    ACS OMEGA, 2023, 9 (01): : 994 - 1000
  • [22] Machine Learning-Assisted Polymer Design for Improving the Performance of Non-Fullerene Organic Solar Cells
    Kranthiraja, Kakaraparthi
    Saeki, Akinori
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (25) : 28936 - 28944
  • [23] Multilayer Machine Learning-Assisted Optimization-Based Robust Design and Its Applications to Antennas and Array
    Wu, Qi
    Chen, Weiqi
    Yu, Chen
    Wang, Haiming
    Hong, Wei
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2021, 69 (09) : 6052 - 6057
  • [24] Machine learning-assisted molecular design and efficiency prediction for high-performance organic photovoltaic materials
    Sun, Wenbo
    Zheng, Yujie
    Yang, Ke
    Zhang, Qi
    Shah, Akeel A.
    Wu, Zhou
    Sun, Yuyang
    Feng, Liang
    Chen, Dongyang
    Xiao, Zeyun
    Lu, Shirong
    Li, Yong
    Sun, Kuan
    SCIENCE ADVANCES, 2019, 5 (11)
  • [25] A Comprehensive Review on Conventional and Machine Learning-Assisted Design of 5G Microstrip Patch Antenna
    Chhaule, Nupur
    Koley, Chaitali
    Mandal, Sudip
    Onen, Ahmet
    Ustun, Taha Selim
    ELECTRONICS, 2024, 13 (19)
  • [26] Machine learning-assisted design of polarization-controlled dynamically switchable full-color metasurfaces
    Hu, Lechuan
    Ma, Lanxin
    Wang, Chengchao
    Liu, Linhua
    OPTICS EXPRESS, 2022, 30 (15): : 26519 - 26533
  • [27] Efficient Adsorption of Pollutants from Aqueous Solutions by Hydrochar-Based Hierarchical Porous Carbons
    Ercegovic, Marija
    Petrovic, Jelena
    Koprivica, Marija
    Simic, Marija
    Grubisic, Mirko
    Vukovic, Nikola
    Krstic, Jugoslav
    WATER, 2024, 16 (15)
  • [28] Porous carboxylated carbon nanotubes hydrogel microspheres for removing U(VI) from aqueous solutions
    Jian, Yizhao
    Xie, Shuibo
    Duan, Yi
    Wang, Guohua
    Wang, Chenxu
    Guo, Yu
    JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2023, 332 (07) : 2679 - 2689
  • [29] Porous Methyltrimethoxysilane Coated Nanoscale-Hydroxyapatite for Removing Lead Ions from Aqueous Solutions
    Ciobanu, C. S.
    Iconaru, S. L.
    Popa, C. L.
    Costescu, A.
    Motelica-Heino, M.
    Predoi, D.
    JOURNAL OF NANOMATERIALS, 2014, 2014
  • [30] Machine learning-assisted optimal schedule of underground water pipe inspection
    Fan, Xudong
    Yu, Xiong
    JOURNAL OF INFRASTRUCTURE PRESERVATION AND RESILIENCE, 2023, 4 (01):