Machine learning-assisted design of porous carbons for removing paracetamol from aqueous solutions

被引:8
|
作者
Kowalczyk, Piotr [1 ]
Terzyk, Artur P. [2 ]
Erwardt, Paulina [2 ]
Hough, Michael [1 ]
Deditius, Artur P. [1 ,3 ]
Gauden, Piotr A. [4 ]
Neimark, Alexander, V [5 ]
Kaneko, Katsumi [6 ]
机构
[1] Murdoch Univ, Coll Sci Hlth Engn & Educ, Murdoch, WA 6150, Australia
[2] Nicolaus Copernicus Univ Torun, Fac Chem, Physicochem Carbon Mat Res Grp, Gagarin St 7, PL-787100 Torun, Poland
[3] Univ Western Australia, Sch Earth Sci, Perth, WA 6009, Australia
[4] Nicolaus Copernicus Univ Torun, Fac Chem, Carbon Mat Applicat Electrochem & Environm Protec, Gagarin St 7, PL-87100 Torun, Poland
[5] Rutgers State Univ, Dept Chem & Biochem Engn, 98 Brett Rd, Piscataway, NJ 08854 USA
[6] Shinshu Univ, Ctr Energy & Environm Sci, Nagano 3808553, Japan
关键词
ADSORPTION; GRAPHENE; OPTIMIZATION; MODELS; GASES; FIBER;
D O I
10.1016/j.carbon.2022.07.029
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To accelerate the design and production of porous carbons targeting desired performance characteristics, we propose to incorporate machine learning (ML) regression into pore size distribution (PSD) analysis. Here, we implemented a ML algorithm for predicting paracetamol adsorption capacity of porous carbons from two pore structure parameters: total surface area and surface area of supermicropores-mesopores. These structural parameters of porous carbons are accessible from the software provided with automatic volumetric gas adsorption analyzers. It was shown that theoretical paracetamol capacities of porous carbons predicted using the ML algorithm lies within the range of experimental uncertainty. Nanoporous carbon beads with a high surface area of supermicropores (997 m(2)/g) and mesopores (628 m(2)/g) had the highest adsorption capacity of paracetamol (experiment: 480 +/- 24 mg/g, ML predicted: 498 mg/g). The novel strategy for designing of porous carbon adsorbents using ML-PSD approach has a great potential to facilitate production of novel carbon adsorbents optimized for purification of aqueous solutions from non-electrolyte contaminates.
引用
收藏
页码:371 / 381
页数:11
相关论文
共 50 条
  • [11] Machine learning-assisted evaluation of potential biochars for pharmaceutical removal from water
    Yang, Xiaocui
    Nguyen, X. Cuong
    Tran, Quoc B.
    Nguyen, T. T. Huyen
    Ge, Shengbo
    Nguyen, D. Duc
    Nguyen, Van-Truc
    Le, Phuoc-Cuong
    Rene, Eldon R.
    Singh, Pardeep
    Raizada, Pankaj
    Ahamad, Tansir
    Alshehri, Saad M.
    Xia, Changlei
    Kim, Soo Young
    Van Le, Quyet
    ENVIRONMENTAL RESEARCH, 2022, 214
  • [12] Machine learning-assisted synthetic biology of cyanobacteria and microalgae
    Jin, Weijia
    Wang, Fangzhong
    Chen, Lei
    Zhang, Weiwen
    ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2025, 86
  • [13] Machine Learning-Assisted Analysis of Polarimetric Scattering From Cylindrical Components of Vegetation
    Chen, Hao
    Yang, Chao
    Du, Yang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (01): : 155 - 165
  • [14] Machine learning and modelling approach for removing methylene blue from aqueous solutions: Optimization, kinetics and thermodynamics studies
    Kumari, Sheetal
    Singh, Seema
    Lo, Shang-Lien
    Sharma, Pinki
    Agarwal, Smriti
    Garg, Manoj Chandra
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2025, 166
  • [15] Evaluation of two bioadsorbents for removing paracetamol from aqueous media
    Flores Nardy Ribeiro, Araceli Veronica
    Belisario, Marciela
    Galazzi, Rodrigo Moretto
    Balthazar, Daniele Cazoni
    Pereira, Madson de Godoi
    Ribeiro, Joselito Nardy
    ELECTRONIC JOURNAL OF BIOTECHNOLOGY, 2011, 14 (06):
  • [16] Machine Learning-Assisted design of boron and nitrogen doped graphene nanosheets with tailored thermomechanical properties
    Mashhadzadeh, Amin Hamed
    Dehaghani, Maryam Zarghami
    Mashhadzadeh, Amir Hamed
    Kadyr, Aidyn
    Golman, Boris
    Spitas, Christos
    Kostas, Konstantinos V.
    COMPUTATIONAL MATERIALS SCIENCE, 2024, 240
  • [17] Machine learning-assisted macro simulation for yard arrival prediction
    Minbashi, Niloofar
    Sipila, Hans
    Palmqvist, Carl -William
    Bohlin, Markus
    Kordnejad, Behzad
    JOURNAL OF RAIL TRANSPORT PLANNING & MANAGEMENT, 2023, 25
  • [18] Machine learning-assisted directed protein evolution with combinatorial libraries
    Wu, Zachary
    Kan, S. B. Jennifer
    Lewis, Russell D.
    Wittmann, Bruce J.
    Arnold, Frances H.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (18) : 8852 - 8858
  • [19] Design of Zero Clearance SIW Endfire Antenna Array Using Machine Learning-Assisted Optimization
    Zhang, Jin
    Akinsolu, Mobayode O.
    Liu, Bo
    Zhang, Shuai
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2022, 70 (05) : 3858 - 3863
  • [20] Machine Learning-Assisted In Vitro Rooting Optimization in Passiflora caerulea
    Jafari, Marziyeh
    Daneshvar, Mohammad Hosein
    Jafari, Sahar
    Hesami, Mohsen
    FORESTS, 2022, 13 (12):