Adaptive importance sampling in general mixture classes

被引:180
作者
Cappe, Olivier [2 ]
Douc, Randal [3 ]
Guillin, Arnaud [4 ]
Marin, Jean-Michel [1 ,5 ]
Robert, Christian P. [5 ,6 ]
机构
[1] INRIA Saclay, Project Select, Orsay, France
[2] TELECOM ParisTech, CNRS, LTCI, Paris, France
[3] TELECOM SudParis, Evry, France
[4] Ecole Cent Marseille, CNRS, LATP, Marseille, France
[5] INSEE, CREST, Paris, France
[6] Univ Paris 09, CNRS, CEREMADE, Paris, France
关键词
Importance sampling; Adaptive Monte Carlo; Mixture model; Entropy; Kullback-Leibler divergence; EM algorithm; Population Monte Carlo;
D O I
10.1007/s11222-008-9059-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we propose an adaptive algorithm that iteratively updates both the weights and component parameters of a mixture importance sampling density so as to optimise the performance of importance sampling, as measured by an entropy criterion. The method, called M-PMC, is shown to be applicable to a wide class of importance sampling densities, which includes in particular mixtures of multivariate Student t distributions. The performance of the proposed scheme is studied on both artificial and real examples, highlighting in particular the benefit of a novel Rao-Blackwellisation device which can be easily incorporated in the updating scheme.
引用
收藏
页码:447 / 459
页数:13
相关论文
共 14 条
[1]  
[Anonymous], 2006, R LANG ENV STAT COMP
[2]  
[Anonymous], ESAIM PROBAB STAT
[3]  
[Anonymous], 2005, INFERENCE HIDDEN MAR, DOI DOI 10.1007/0-387-28982-8
[4]   Population Monte Carlo [J].
Cappé, O ;
Guillin, A ;
Marin, JM ;
Robert, CP .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2004, 13 (04) :907-929
[5]  
Chen R, 1996, J ROY STAT SOC B MET, V58, P397
[6]   Convergence of adaptive mixtures of importance sampling schemes [J].
Douc, R. ;
Guillin, A. ;
Marin, J.-M. ;
Robert, C. P. .
ANNALS OF STATISTICS, 2007, 35 (01) :420-448
[7]  
Doucet A., 2001, SEQUENTIAL MONTE CAR, V1, DOI [10.1007/978-1-4757-3437-9, DOI 10.1007/978-1-4757-3437-9]
[8]   BAYESIAN-INFERENCE IN ECONOMETRIC-MODELS USING MONTE-CARLO INTEGRATION [J].
GEWEKE, J .
ECONOMETRICA, 1989, 57 (06) :1317-1339
[9]   WEIGHTED AVERAGE IMPORTANCE SAMPLING AND DEFENSIVE MIXTURE DISTRIBUTIONS [J].
HESTERBERG, T .
TECHNOMETRICS, 1995, 37 (02) :185-194
[10]   INTEGRATION OF MULTIMODAL FUNCTIONS BY MONTE-CARLO IMPORTANCE SAMPLING [J].
OH, MS ;
BERGER, JO .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (422) :450-456