Fluorescence Probing of Active Lithium Distribution in Lithium Metal Anodes

被引:47
作者
Cheng, Xiangyang [1 ,2 ]
Xian, Fang [1 ]
Hu, Zhenglin [1 ]
Wang, Chen [1 ]
Du, Xiaofan [1 ]
Zhang, Huanrui [1 ]
Chen, Shougang [2 ]
Dong, Shanmu [1 ]
Cui, Guanglei [1 ]
机构
[1] Chinese Acad Sci, Qingdao Ind Energy Storage Res Inst, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao 266101, Shandong, Peoples R China
[2] Ocean Univ China, Inst Mat Sci & Engn, Qingdao 266100, Shandong, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
9,10-dimethylanthracene; dendritic lithium; fluorescence probing; lithium batteries; SOLID-ELECTROLYTE INTERFACE; UNIFORM LITHIUM; DEPOSITION; BATTERIES; ION; DENDRITE; MICROSCOPY; ADDITIVES; CARBONATE; GROWTH;
D O I
10.1002/anie.201900105
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The uncontrollable growth of Li dendrites and the accumulation of byproducts are two severe concerns for lithium metal batteries, which leads to safety hazards and a low Coulombic efficiency. To investigate the deterioration of the cell, it is important to figure out the distribution of active Li species on the anode surface and distinguish Li dendrites from byproducts. However, it is still challenging to identify these issues by conventional visual observation methods. In this work, we introduce a novel fluorescent probing strategy using 9,10-dimethylanthracene (DMA). By marking the cycled Li-anode surface, the active Li distribution can be visualized by the fluorescence quenching of DMA reacting with active Li. The method demonstrates validity for electrolyte selection and predictive detection of uneven Li deposition on Li metal anodes. Furthermore, the location of dendrites can be clearly identified after destructive utilization of the anode, which will contribute to the development of failure-analysis technology for Li metal batteries.
引用
收藏
页码:5936 / 5940
页数:5
相关论文
共 52 条
[1]   LITHIUM ELECTRODE CYCLEABILITY AND MORPHOLOGY DEPENDENCE ON CURRENT-DENSITY [J].
ARAKAWA, M ;
TOBISHIMA, S ;
NEMOTO, Y ;
ICHIMURA, M ;
YAMAKI, J .
JOURNAL OF POWER SOURCES, 1993, 43 (1-3) :27-35
[2]   The application of atomic force microscopy for the study of Li deposition processes [J].
Aurbach, D ;
Cohen, Y .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (11) :3525-3532
[3]   Factors which limit the cycle life of rechargeable lithium (metal) batteries [J].
Aurbach, D ;
Zinigrad, E ;
Teller, H ;
Dan, P .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (04) :1274-1279
[4]  
Bhattacharyya R, 2010, NAT MATER, V9, P504, DOI [10.1038/NMAT2764, 10.1038/nmat2764]
[5]   An EIS study of the anode Li/PEO-LiTFSI of a Li polymer battery [J].
Bouchet, R ;
Lascaud, S ;
Rosso, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (10) :A1385-A1389
[6]  
Chandrashekar S, 2012, NAT MATER, V11, P311, DOI [10.1038/NMAT3246, 10.1038/nmat3246]
[7]   Vinylene carbonate and vinylene trithiocarbonate as electrolyte additives for lithium ion battery [J].
Chang, Chia-Chin ;
Hsu, Sheng-Hsiang ;
Jung, Yi-Fang ;
Yang, Chien-Hsin .
JOURNAL OF POWER SOURCES, 2011, 196 (22) :9605-9611
[8]   Correlating Microstructural Lithium Metal Growth with Electrolyte Salt Depletion in Lithium Batteries Using 7Li MRI [J].
Chang, Hee Jung ;
Ilott, Andrew J. ;
Trease, Nicole M. ;
Mohammadi, Mohaddese ;
Jerschow, Alexej ;
Grey, Clare P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (48) :15209-15216
[9]   Improving Lithium-Sulfur Battery Performance under Lean Electrolyte through Nanoscale Confinement in Soft Swellable Gels [J].
Chen, Junzheng ;
Henderson, Wesley A. ;
Pan, Huilin ;
Perdue, Brian R. ;
Cao, Ruiguo ;
Hu, Jian Zhi ;
Wan, Chuan ;
Han, Kee Sung ;
Mueller, Karl T. ;
Zhang, Ji-Guang ;
Shao, Yuyan ;
Liu, Jun .
NANO LETTERS, 2017, 17 (05) :3061-3067
[10]   Highly sensitive biological and chemical sensors based on reversible fluorescence quenching in a conjugated polymer [J].
Chen, LH ;
McBranch, DW ;
Wang, HL ;
Helgeson, R ;
Wudl, F ;
Whitten, DG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (22) :12287-12292