Betti numbers of symmetric shifted ideals

被引:14
作者
Biermann, Jennifer [1 ]
de Alba, Hernan [2 ]
Galetto, Federico [3 ]
Murai, Satoshi [4 ]
Nagel, Uwe [5 ]
O'Keefe, Augustine [6 ]
Roemer, Tim [7 ]
Seceleanu, Alexandra [8 ]
机构
[1] Hobart & William Smith Coll, Dept Math & Comp Sci, 300 Pulteney St, Geneva, NY 14456 USA
[2] Univ Autonoma Zacatecas, CONACyT UAZ, Unidad Acad Matemat, Calzada Solidaridad Entronque Paseo Bufa, Zacatecas 98000, Zac, Mexico
[3] Cleveland State Univ, Dept Math & Stat, Cleveland, OH 44115 USA
[4] Waseda Univ, Dept Math, Fac Educ, Shinjuku Ku, 1-6-1 Nishi Waseda, Tokyo 1698050, Japan
[5] Univ Kentucky, Dept Math, 715 Patterson Off Tower, Lexington, KY 40506 USA
[6] Connecticut Coll, Dept Math, 270 Mohegan Ave Pkwy, New London, CT 06320 USA
[7] Univ Osnabruck, Inst Math, D-49069 Osnabruck, Germany
[8] Univ Nebraska, Dept Math, 203 Avery Hall, Lincoln, NE 68588 USA
关键词
Betti numbers; Equivariant resolution; Linear quotients; Shifted ideal; Star configuration; Symbolic power; MINIMAL FREE RESOLUTION; STAR-CONFIGURATION;
D O I
10.1016/j.jalgebra.2020.04.037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new class of monomial ideals which we call symmetric shifted ideals. Symmetric shifted ideals are fixed by the natural action of the symmetric group and, within the class of monomial ideals fixed by this action, they can be considered as an analogue of stable monomial ideals within the class of monomial ideals. We show that a symmetric shifted ideal has linear quotients and compute its (equivariant) graded Betti numbers. As an application of this result, we obtain several consequences for graded Betti numbers of symbolic powers of defining ideals of star configurations. (C) 2020 Elsevier Inc. All rights Inc. All rights reserved.
引用
收藏
页码:312 / 342
页数:31
相关论文
共 37 条
  • [1] The Minimal Free Resolution of a Fat Star-Configuration in Pn
    Ahn, Jeaman
    Shin, Yong Su
    [J]. ALGEBRA COLLOQUIUM, 2014, 21 (01) : 157 - 166
  • [2] THE MINIMAL FREE RESOLUTION OF A STAR-CONFIGURATION IN Pn AND THE WEAK LEFSCHETZ PROPERTY
    Ahn, Jeaman
    Shin, Yong Su
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (02) : 405 - 417
  • [3] [Anonymous], 2006, Graduate Texts in Mathematics
  • [4] [Anonymous], MACAULAY2 SOFTWARE S
  • [5] Finite generation of symmetric ideals
    Aschenbrenner, Matthias
    Hillar, Christopher J.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (11) : 5171 - 5192
  • [6] Bauer T, 2009, CONTEMP MATH, V496, P33
  • [7] COMPARING POWERS AND SYMBOLIC POWERS OF IDEALS
    Bocci, Cristiano
    Harbourne, Brian
    [J]. JOURNAL OF ALGEBRAIC GEOMETRY, 2010, 19 (03) : 399 - 417
  • [8] Complete intersections on general hypersurfaces
    Carlini, Enrico
    Chiantini, Luca
    Geramita, Anthony V.
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 2008, 57 : 121 - 136
  • [9] Star configurations on generic hypersurfaces
    Carlini, Enrico
    Guardo, Elena
    Van Tuyl, Adam
    [J]. JOURNAL OF ALGEBRA, 2014, 407 : 1 - 20
  • [10] Cooper S. M., 2014, Springer Proc. Math. Stat, V76, P147