Vibrational density of states of free and embedded semiconducting GaN nanoparticles

被引:3
作者
Desmarchelier, P. [1 ,2 ]
Termentzidis, K. [1 ]
Tanguy, A. [2 ,3 ]
机构
[1] Univ Lyon, CETHIL, INSA Lyon, CNRS UMR5008, F-69621 Villeurbanne, France
[2] Univ Lyon, LaMCoS, INSA Lyon, CNRS UMR5259, F-69621 Villeurbanne, France
[3] Univ Paris Saclay, ONERA, Chemin Huniere,BP 80100, F-92123 Palaiseau, France
关键词
nanoparticles; free; embedded; vibrational density of state; molecular dynamics; thermal conductivity; MOLECULAR-DYNAMICS; THERMAL-CONDUCTIVITY; GALLIUM; ORDER; SIZE; BULK;
D O I
10.1088/1361-6641/ab957c
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The impact of the size of free and embedded GaN nanoparticles on vibrational properties has been studied using three different numerical methods. The thermal conductivity of free nanoparticles was also estimated with equilibrium molecular dynamics. Important discrepancies between the vibrational density of states of small nanoparticles compared to the bulk are observed, such as the presence of modes in the bandgap related to the surface modes, the optical peaks decrease, and the redshift of the transverse acoustic peak. When these nanoparticles are embedded in a SiO(2)matrix, the peaks in the bandgap disappear and the transverse acoustic modes are shifted back to the bulk frequencies. These differences between the free and the embedded nanoparticles tend to disappear for nanoparticles with diameters larger than 5 nm. Finally, the thermal conductivity for free nanoparticles is computed, showing a non-linear augmentation upon the increase of the size of nanoparticles. The latter results could be useful in effective medium models used to estimate the thermal conductivity of nanocomposites.
引用
收藏
页数:12
相关论文
共 53 条
[31]   Phonons in an inhomogeneous continuum: Vibrations of an embedded nanoparticle [J].
Murray, DB ;
Saviot, L .
PHYSICAL REVIEW B, 2004, 69 (09)
[32]   Phonon density of states of bulk gallium nitride [J].
Nipko, JC ;
Loong, CK ;
Balkas, CM ;
Davis, RF .
APPLIED PHYSICS LETTERS, 1998, 73 (01) :34-36
[33]   Thermal phonon engineering by tailored nanostructures [J].
Nomura, Masahiro ;
Shiomi, Junichiro ;
Shiga, Takuma ;
Anufriev, Roman .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2018, 57 (08)
[34]   Modelling of compound semiconductors: analytical bond-order potential for gallium, nitrogen and gallium nitride [J].
Nord, J ;
Albe, K ;
Erhart, P ;
Nordlund, K .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2003, 15 (32) :5649-5662
[35]   Molecular dynamics of binary metal nitrides and ternary oxynitrides [J].
Okeke, Onyekwelu U. ;
Lowther, J. E. .
PHYSICA B-CONDENSED MATTER, 2009, 404 (20) :3577-3581
[36]   FAST PARALLEL ALGORITHMS FOR SHORT-RANGE MOLECULAR-DYNAMICS [J].
PLIMPTON, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 117 (01) :1-19
[37]   Elastic constants of gallium nitride [J].
Polian, A ;
Grimsditch, M ;
Grzegory, I .
JOURNAL OF APPLIED PHYSICS, 1996, 79 (06) :3343-3344
[38]   A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids [J].
Qiu, Lin ;
Zhu, Ning ;
Feng, Yanhui ;
Michaelides, Efstathios E. ;
Zyla, Gawel ;
Jing, Dengwei ;
Zhang, Xinxin ;
Norris, Pamela M. ;
Markides, Christos N. ;
Mahian, Omid .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2020, 843 :1-81
[39]   Size and Shape Dependence of the Vibrational Spectrum and Low-Temperature Specific Heat of Au Nanoparticles [J].
Sauceda, Huziel E. ;
Salazar, Fernando ;
Perez, Luis A. ;
Garzon, Ignacio L. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (47) :25160-25168
[40]   Acoustic vibrations of anisotropic nanoparticles [J].
Saviot, Lucien ;
Murray, Daniel B. .
PHYSICAL REVIEW B, 2009, 79 (21)