Vibrational density of states of free and embedded semiconducting GaN nanoparticles

被引:3
作者
Desmarchelier, P. [1 ,2 ]
Termentzidis, K. [1 ]
Tanguy, A. [2 ,3 ]
机构
[1] Univ Lyon, CETHIL, INSA Lyon, CNRS UMR5008, F-69621 Villeurbanne, France
[2] Univ Lyon, LaMCoS, INSA Lyon, CNRS UMR5259, F-69621 Villeurbanne, France
[3] Univ Paris Saclay, ONERA, Chemin Huniere,BP 80100, F-92123 Palaiseau, France
关键词
nanoparticles; free; embedded; vibrational density of state; molecular dynamics; thermal conductivity; MOLECULAR-DYNAMICS; THERMAL-CONDUCTIVITY; GALLIUM; ORDER; SIZE; BULK;
D O I
10.1088/1361-6641/ab957c
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The impact of the size of free and embedded GaN nanoparticles on vibrational properties has been studied using three different numerical methods. The thermal conductivity of free nanoparticles was also estimated with equilibrium molecular dynamics. Important discrepancies between the vibrational density of states of small nanoparticles compared to the bulk are observed, such as the presence of modes in the bandgap related to the surface modes, the optical peaks decrease, and the redshift of the transverse acoustic peak. When these nanoparticles are embedded in a SiO(2)matrix, the peaks in the bandgap disappear and the transverse acoustic modes are shifted back to the bulk frequencies. These differences between the free and the embedded nanoparticles tend to disappear for nanoparticles with diameters larger than 5 nm. Finally, the thermal conductivity for free nanoparticles is computed, showing a non-linear augmentation upon the increase of the size of nanoparticles. The latter results could be useful in effective medium models used to estimate the thermal conductivity of nanocomposites.
引用
收藏
页数:12
相关论文
共 53 条
[11]   An investigation into the structural features and thermal conductivity of silicon nanoparticles using molecular dynamics simulations [J].
Fang, Kuan-Chuan ;
Weng, Cheng-I ;
Ju, Shin-Pon .
NANOTECHNOLOGY, 2006, 17 (15) :3909-3914
[12]   Atomistic amorphous/crystalline interface modelling for superlattices and core/shell nanowires [J].
France-Lanord, Arthur ;
Blandre, Etienne ;
Albaret, Tristan ;
Merabia, Samy ;
Lacroix, David ;
Termentzidis, Konstantinos .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (05)
[13]   Mechanical Coupling in Gold Nanoparticles Supermolecules Revealed by Plasmon-Enhanced Ultralow Frequency Raman Spectroscopy [J].
Girard, A. ;
Gehan, H. ;
Crut, A. ;
Mermet, A. ;
Saviot, L. ;
Margueritat, J. .
NANO LETTERS, 2016, 16 (06) :3843-3849
[14]   Confinement effects on the vibrational properties of III-V and II-VI nanoclusters [J].
Han, Peng ;
Bester, Gabriel .
PHYSICAL REVIEW B, 2012, 85 (04)
[15]   Interatomic potentials for the vibrational properties of III-V semiconductor nanostructures [J].
Han, Peng ;
Bester, Gabriel .
PHYSICAL REVIEW B, 2011, 83 (17)
[16]   Influence of nanoparticle size distribution on the thermal conductivity of particulate nanocomposites [J].
Huang, Cong-Liang ;
Qian, Xin ;
Yang, Rong-Gui .
EPL, 2017, 117 (02)
[17]   Thermal conductivity of GaN crystals in 4.2-300 K range [J].
Jezowski, A ;
Danilchenko, BA ;
Bockowski, M ;
Grzegory, I ;
Krukowski, S ;
Suski, T ;
Paszkiewicz, T .
SOLID STATE COMMUNICATIONS, 2003, 128 (2-3) :69-73
[18]   Phonon transport properties of bulk and monolayer GaN from first-principles calculations [J].
Jiang, Yongqiang ;
Cai, Shuang ;
Tao, Yi ;
Wei, Zhiyong ;
Bi, Kedong ;
Chen, Yunfei .
COMPUTATIONAL MATERIALS SCIENCE, 2017, 138 :419-425
[19]   Probing Elasticity at the Nanoscale: Terahertz Acoustic Vibration of Small Metal Nanoparticles [J].
Juve, Vincent ;
Crut, Aurelien ;
Maioli, Paolo ;
Pellarin, Michel ;
Broyer, Michel ;
Del Fatti, Natalia ;
Vallee, Fabrice .
NANO LETTERS, 2010, 10 (05) :1853-1858
[20]   Mechanism and crucial parameters on GaN nanocluster formation in a silica matrix [J].
Kioseoglou, J. ;
Katsikini, M. ;
Termentzidis, K. ;
Karakostas, I. ;
Paloura, E. C. .
JOURNAL OF APPLIED PHYSICS, 2017, 121 (05)