Charge Transport within a Three-Dimensional DNA Nanostructure Framework

被引:122
作者
Lu, Na [3 ,4 ,5 ]
Pei, Hao [3 ]
Ge, Zhilei [1 ,2 ,3 ]
Simmons, Chad R. [1 ,2 ]
Yan, Hao [1 ,2 ]
Fan, Chunhai [3 ]
机构
[1] Arizona State Univ, Biodesign Inst, Tempe, AZ 85287 USA
[2] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA
[3] Chinese Acad Sci, Shanghai Inst Appl Phys, Lab Phys Biol, Shanghai 201800, Peoples R China
[4] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Labs Transducer Technol, Shanghai 200050, Peoples R China
[5] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Sci & Technol Microsyst Lab, Shanghai 200050, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTRON-TRANSFER; HOLE-TRANSFER; DYNAMICS; KINETICS; SEQUENCE; SENSOR;
D O I
10.1021/ja302447r
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Three-dimensional (3D) DNA nanostructures have shown great promise for various applications including molecular sensing and therapeutics. Here we report kinetic studies of DNA-mediated charge transport (CT) within a 3D DNA nanostructure framework. A tetrahedral DNA nanostructure was used to investigate the through-duplex and through-space CT of small redox molecules (methylene blue (MB) and ferrocene (Fc)) that were bound to specific positions above the surface of the gold electrode. CT rate measurements provide unambiguous evidence that the intercalative MB probe undergoes efficient mediated CT over longer distances along the duplex, whereas the nonintercalative Fc probe tunnels electrons through the space. This study sheds new light on DNA-based molecular electronics and on designing high-performance biosensor devices.
引用
收藏
页码:13148 / 13151
页数:4
相关论文
共 38 条
[11]   Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling [J].
Giese, B ;
Amaudrut, J ;
Köhler, AK ;
Spormann, M ;
Wessely, S .
NATURE, 2001, 412 (6844) :318-320
[12]  
Goodman R.P., J CHEM COMMUN
[13]   Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication [J].
Goodman, RP ;
Schaap, IAT ;
Tardin, CF ;
Erben, CM ;
Berry, RM ;
Schmidt, CF ;
Turberfield, AJ .
SCIENCE, 2005, 310 (5754) :1661-1665
[14]   The single-step synthesis of a DNA tetrahedron [J].
Goodman, RP ;
Berry, RM ;
Turberfield, AJ .
CHEMICAL COMMUNICATIONS, 2004, (12) :1372-1373
[15]   Electrochemistry using self-assembled DNA monolayers on highly oriented pyrolytic graphite [J].
Gorodetsky, Alon A. ;
Barton, Jacqueline K. .
LANGMUIR, 2006, 22 (18) :7917-7922
[16]   DNA-Mediated Electrochemistry [J].
Gorodetsky, Alon A. ;
Buzzeo, Marisa C. ;
Barton, Jacqueline K. .
BIOCONJUGATE CHEMISTRY, 2008, 19 (12) :2285-2296
[17]   A proximity-based programmable DNA nanoscale assembly line [J].
Gu, Hongzhou ;
Chao, Jie ;
Xiao, Shou-Jun ;
Seeman, Nadrian C. .
NATURE, 2010, 465 (7295) :202-U86
[18]   Proximity-induced superconductivity in DNA [J].
Kasumov, AY ;
Kociak, M ;
Guéron, S ;
Reulet, B ;
Volkov, VT ;
Klinov, DV ;
Bouchiat, H .
SCIENCE, 2001, 291 (5502) :280-282
[19]   HOMO Energy Gap Dependence of Hole-Transfer Kinetics in DNA [J].
Kawai, Kiyohiko ;
Hayashi, Mitsuo ;
Majima, Tetsuro .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (10) :4806-4811
[20]   Molecular robots guided by prescriptive landscapes [J].
Lund, Kyle ;
Manzo, Anthony J. ;
Dabby, Nadine ;
Michelotti, Nicole ;
Johnson-Buck, Alexander ;
Nangreave, Jeanette ;
Taylor, Steven ;
Pei, Renjun ;
Stojanovic, Milan N. ;
Walter, Nils G. ;
Winfree, Erik ;
Yan, Hao .
NATURE, 2010, 465 (7295) :206-210