Rigorous numerics for partial differential equations: The Kuramoto-Sivashinsky equation

被引:0
作者
Zgliczynski, P
Mischaikow, K
机构
[1] Jagiellonian Univ, Inst Math, PL-30059 Krakow, Poland
[2] Georgia Inst Technol, Sch Math, Ctr Dynam Syst & Nonlinear Studies, Atlanta, GA 30332 USA
关键词
D O I
10.1007/s002080010010
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a new topological method for the study of the dynamics of dissipative PDEs. The method is based on the concept of the self-consistent a priori bounds, which permit the rigorous justification of the use of Galerkin projections. As a result, we obtain a low-dimensional system of ODEs subject to rigorously controlled small perturbation from the neglected modes. To these ODEs we apply the Conley index to obtain information about the dynamics of the PDE under consideration. We applied the method to the Kuramoto-Sivashinsky equation u(t) = (u(2))(x) - u(xx) - nuu(xxx), u(x, t) = u(x + 2pi, t), u(x, t) = -u(-x, t). We obtained a computer-assisted proof of the existence of several fixed points for various values of nu > 0.
引用
收藏
页码:255 / 288
页数:34
相关论文
共 28 条
[1]  
ALLILI M, UNPUB RIGOROUS NUMER
[2]  
[Anonymous], 1988, APPL MATH SCI
[3]   Symbolic dynamics for the Henon-Heiles Hamiltonian on the critical level [J].
Arioli, G ;
Zgliczynski, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 171 (01) :173-202
[4]  
Arnold L., 1995, LECT NOTES MATH, V1609
[5]  
CESARI L, 1964, MICH MATH J, V11, P383
[6]   CRITICAL MANIFOLDS, TRAVELING WAVES, AND AN EXAMPLE FROM POPULATION-GENETICS [J].
CONLEY, C ;
FIFE, P .
JOURNAL OF MATHEMATICAL BIOLOGY, 1982, 14 (02) :159-176
[7]  
Conley C., 1978, CBMS LECT NOTES, V38
[8]  
FOIAS C, 1988, J MATH PURE APPL, V67, P197
[9]   Computer assisted proof of chaos in the Lorenz equations [J].
Galias, Z ;
Zgliczynski, P .
PHYSICA D, 1998, 115 (3-4) :165-188
[10]  
Hale J., 1984, INTRO INFINITE DIMEN, DOI [10.1007/978-1-4757-4493-4, DOI 10.1007/978-1-4757-4493-4]