Adaptive step size for the hybrid Monte Carlo algorithm

被引:1
|
作者
deForcrand, P
Takaishi, T
机构
[1] Swiss Center for Scientific Computing (SCSC), ETH-Zürich, Zürich
关键词
D O I
10.1103/PhysRevE.55.3658
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We implement an adaptive step-size method for the hybrid Monte Carlo algorithm. The adaptive step size is given by solving a symmetric error equation. An integrator with such an adaptive step size is reversible. Although we observe appreciable variations of the step size, the overhead of the method exceeds its benefits. We propose an explanation for this phenomenon.
引用
收藏
页码:3658 / 3663
页数:6
相关论文
共 50 条
  • [21] Adaptive Monte Carlo algorithm for Wigner kernel evaluation
    Todorov, Venelin
    Dimov, Ivan
    Georgieva, Rayna
    Dimitrov, Stoyan
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (14): : 9953 - 9964
  • [22] Implementation and analysis of an adaptive multilevel Monte Carlo algorithm
    Hoel, Hakon
    von Schwerin, Erik
    Szepessy, Anders
    Tempone, Raul
    MONTE CARLO METHODS AND APPLICATIONS, 2014, 20 (01): : 1 - 41
  • [23] Adaptive Monte Carlo algorithm for Wigner kernel evaluation
    Venelin Todorov
    Ivan Dimov
    Rayna Georgieva
    Stoyan Dimitrov
    Neural Computing and Applications, 2020, 32 : 9953 - 9964
  • [24] A Fast Monte Carlo Dose Algorithm for Radiotherapy Treatment Planning Based On Hybrid Adaptive Meshes
    Yuan, J.
    Brindle, J.
    Zheng, Y.
    Sohn, J.
    Geis, P.
    Yao, M.
    Lo, S.
    Wessels, B.
    MEDICAL PHYSICS, 2012, 39 (06) : 3596 - 3597
  • [25] Application of Hybrid Monte Carlo Algorithm in Heat Transfer
    Kumar, S. Reetik
    Reddy, B. Konda
    Balaji, C.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2017, 139 (08):
  • [26] Testing trivializing maps in the Hybrid Monte Carlo algorithm
    Engel, Georg P.
    Schaefer, Stefan
    COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (10) : 2107 - 2114
  • [27] A hybrid parareal Monte Carlo algorithm for parabolic problems
    Dabaghi, Jad
    Maday, Yvon
    Zoia, Andrea
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 420
  • [28] HAMILTONIAN EVOLUTION FOR THE HYBRID MONTE-CARLO ALGORITHM
    SEXTON, JC
    WEINGARTEN, DH
    NUCLEAR PHYSICS B, 1992, 380 (03) : 665 - 677
  • [29] Hybrid Monte Carlo algorithm for the double exchange model
    Alonso, JL
    Fernández, LA
    Guinea, F
    Laliena, V
    Martín-Mayor, V
    NUCLEAR PHYSICS B, 2001, 596 (03) : 587 - 610
  • [30] Faster fermions in the tempered hybrid Monte Carlo algorithm
    Boyd, G
    MULTISCALE PHENOMENA AND THEIR SIMULATION, 1997, : 227 - 231