Berry-Esseen bounds and Edgeworth expansions in the central limit theorem for transport distances

被引:15
作者
Bobkov, Sergey G. [1 ]
机构
[1] Univ Minnesota, Sch Math, 127 Vincent Hall,206 Church St SE, Minneapolis, MN 55455 USA
关键词
Central limit theorem; Transport distances; Edgeworth expansions; Coupling; MINIMAL DISTANCES; CONSTANTS;
D O I
10.1007/s00440-017-0756-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For sums of independent random variables , Berry-Esseen-type bounds are derived for the power transport distances in terms of Lyapunov coefficients . In the case of identically distributed summands, the rates of convergence are refined under Cram,r's condition.
引用
收藏
页码:229 / 262
页数:34
相关论文
共 37 条
[2]   ASYMPTOTIC EXPANSIONS IN GLOBAL CENTRAL LIMIT-THEOREMS [J].
AGNEW, RP .
ANNALS OF MATHEMATICAL STATISTICS, 1959, 30 (03) :721-737
[3]   ESTIMATES FOR GLOBAL CENTRAL LIMIT-THEOREMS [J].
AGNEW, RP .
ANNALS OF MATHEMATICAL STATISTICS, 1957, 28 (01) :26-42
[4]  
[Anonymous], LIMIT THEOREMS PROBA
[5]  
[Anonymous], 1949, AM MATH SOC
[6]  
[Anonymous], VESTNIK LENINGRAD U
[7]  
Bartfai P, 1970, Studia Sci. Math. Hungar, V5, P41
[8]   DUALITY FOR BOREL MEASURABLE COST FUNCTIONS [J].
Beiglboeck, Mathias ;
Schachermayer, Walter .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (08) :4203-4224
[9]  
Bhattacharya R.N., 1976, Normal Approximation and Asymptotic Expansions
[10]  
Bikjalis A., 1973, MATH STAT PROBABILIT, V7, P149