Covalent immobilization of VEGF on allogeneic bone through polydopamine coating to improve bone regeneration

被引:6
|
作者
Huang, Jianhao [1 ]
Lu, Jingwei [2 ]
Liu, Ziying [2 ]
Jin, Jing [3 ]
Xie, Chunmei [4 ]
Zheng, Yang [5 ]
Wang, Zhen [2 ]
Yu, Lingfeng [2 ]
Zhu, Yan [2 ]
Fan, Gentao [2 ]
Sun, Guojing [2 ]
Xu, Zhihong [6 ]
Zhou, Guangxin [1 ,2 ]
机构
[1] Southern Med Univ, Jinling Hosp, Sch Clin Med 1, Dept Orthoped, Nanjing, Peoples R China
[2] Nanjing Univ, Affiliated Jinling Hosp, Sch Med, Nanjing, Peoples R China
[3] Nanjing Drum Tower Hosp, Nanjing, Peoples R China
[4] Hangzhou Lancet Robot Co Ltd, Hangzhou, Peoples R China
[5] Nanjing Yaho Dent Clin, Nanjing, Peoples R China
[6] Nanjing Drum Tower Hosp, Dept Orthopaed Surg, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
polydopamine (coating); surface modification; allogeneic bone; osteogenesis; angiogenesis; GRAFT SUBSTITUTES; IN-VITRO; OSTEOGENESIS; ANGIOGENESIS; SCAFFOLDS; ALLOGRAFT; FAILURE; VIVO;
D O I
10.3389/fbioe.2022.1003677
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Objective: Promoting bone regeneration and repairing in bone defects is of great significance in clinical work. Using a simple and effective surface treatment method to enhance the osteogenic ability of existing bone scaffold is a promising method. In this article, we study the application of catecholic amino acid 3,4-dihydroxyphenylalanine (DOPA) surface coating chelated with vascular endothelial growth factor (VEGF) on allogeneic bone. Method: Allogeneic bone is immersed in DOPA solution and DOPA form polydopamine (PDA) with good adhesion. Electron microscopy is used to characterize the surface characteristics of allogeneic bone. MC3T3-E1 cells were tested for biocompatibility and osteogenic signal expression. Finally, a 12-week rabbit bone defect model was established to evaluate bone regeneration capability. Results: We found that the surface microenvironment of DOPA bonded allogeneic bone was similar to the natural allogeneic bone. VEGF loaded allografts exhibited satisfying biocompatibility and promoted the expression of osteogenic related signals in vitro. The VEGF loaded allografts healed the bone defect after 12 weeks of implantation that continuous and intact bone cortex was observed. Conclusion: The PDA coating is a simple surface modification method and has mild properties and high adhesion. Meanwhile, the PDA coating can act on the surface modification of different materials. This study provides an efficient surface modification method for enhancing bone regeneration by PDA coating, which has a high potential for translational clinical applications.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] The impact of immobilization of BMP-2 on PDO membrane for bone regeneration
    Kim, Ji-Eun
    Lee, Eun-Jung
    Kim, Hyoun-Ee
    Koh, Young-Hag
    Jang, Jun-Hyeog
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2012, 100A (06) : 1488 - 1493
  • [32] Enhancing bone regeneration through 3D printed biphasic calcium phosphate scaffolds featuring graded pore sizes
    Wang, Yue
    Liu, Yang
    Chen, Shangsi
    Siu, Ming-Fung Francis
    Liu, Chao
    Bai, Jiaming
    Wang, Min
    BIOACTIVE MATERIALS, 2025, 46 : 21 - 36
  • [33] Zwitterionic keratin coating on silk-Laponite fibrous membranes for guided bone regeneration
    Atrian, Matineh
    Kharaziha, Mahshid
    Javidan, Hanieh
    Alihosseini, Farzaneh
    Emadi, Rahmatallah
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2022, 16 (11) : 1019 - 1031
  • [34] Functionalization of bone implants with nanodiamond particles and angiopoietin-1 to improve vascularization and bone regeneration
    Wu, Xujun
    Bruschi, Michela
    Waag, Thilo
    Schweeberg, Sarah
    Tian, Yuan
    Meinhardt, Thomas
    Stigler, Robert
    Larsson, Karin
    Funk, Martin
    Steinmueller-Nethl, Doris
    Rasse, Michael
    Krueger, Anke
    JOURNAL OF MATERIALS CHEMISTRY B, 2017, 5 (32) : 6629 - 6636
  • [35] Atypical histological presentation of bone regeneration after insertion of cryoprotected allogeneic bone graft
    Cruz, Pamela
    De Bortoli, Joao
    Benalcazar-Jalkh, Ernesto B.
    Boutros, Suheil M.
    Bhola, Monish
    Grande, Federico
    Nayak, Vasudev V.
    Tovar, Nick
    Coelho, Paulo G.
    Witek, Lukasz
    MEDICINA ORAL PATOLOGIA ORAL Y CIRUGIA BUCAL, 2024, 29 (01): : e103 - e110
  • [36] Chirality Regulates Bone Regeneration through Mechanoresponse and Immunoregulation
    Lou, Tengfei
    Wang, Xu
    Li, Juehong
    Wang, Wei
    Han, Pei
    Yu, Shiyang
    Fan, Cunyi
    Zhou, Chao
    Ruan, Hongjiang
    ACS NANO, 2025, 19 (08) : 7767 - 7783
  • [37] Metallic Implant Surface Activation through Electrospinning Coating of Nanocomposite Fiber for Bone Regeneration
    Al-Khateeb, Amjed
    Al-Hassani, Emad S.
    Jabur, Akram R.
    INTERNATIONAL JOURNAL OF BIOMATERIALS, 2023, 2023
  • [38] Hypoxia Enhanced Bone Regeneration Through the HIF-1α/β-Catenin Pathway in Femoral Head Osteonecrosis
    Zhao, HaiYan
    Yeersheng, Releken
    Xia, YaYi
    Kang, PengDe
    Wang, WenJi
    AMERICAN JOURNAL OF THE MEDICAL SCIENCES, 2021, 362 (01) : 78 - 91
  • [39] Nanocomposite Membranes Enhance Bone Regeneration Through Restoring Physiological Electric Microenvironment
    Zhang, Xuehui
    Zhang, Chenguang
    Lin, Yuanhua
    Hu, Penghao
    Shen, Yang
    Wang, Ke
    Meng, Song
    Chai, Yuan
    Dai, Xiaohan
    Liu, Xing
    Liu, Yun
    Mo, Xiaoju
    Cao, Cen
    Li, Shue
    Deng, Xuliang
    Chen, Lili
    ACS NANO, 2016, 10 (08) : 7279 - 7286
  • [40] Bioinspired polydopamine coating-assisted electrospun polyurethane-graphene oxide nanofibers for bone tissue engineering application
    Ghorbani, Farnaz
    Zamanian, Ali
    Aidun, Amir
    JOURNAL OF APPLIED POLYMER SCIENCE, 2019, 136 (24)