Hierarchical Pruning for Simplification of Convolutional Neural Networks in Diabetic Retinopathy Classification

被引:0
|
作者
Hajabdollahi, Mohsen [1 ]
Esfandiarpoor, Reza [1 ]
Najarian, Kayvan [2 ,3 ]
Karimi, Nader [1 ]
Samavi, Shadrokh [1 ,4 ]
Soroushmehr, S. M. Reza [2 ,3 ]
机构
[1] Isfahan Univ Technol, Dept Elect & Comp Engn, Esfahan 8415683111, Iran
[2] Univ Michigan, Michigan Ctr Integrat Res Crit Care, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Emergency Med, Ann Arbor, MI 48109 USA
关键词
Diabetic retinopathy; convolutional neural networks; simplification method; pruning;
D O I
10.1109/embc.2019.8857769
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Convolutional neural networks (CNNs) are widely used in automatic detection and analysis of diabetic retinopathy (DR). Although CNNs have proper detection performance, their structural and computational complexity is troublesome. In this study, the problem of reducing CNN's structural complexity for DR analysis is addressed by proposing a hierarchical pruning method. The original VGG16-Net is modified to have fewer parameters and is employed for DR classification. To have an appropriate feature extraction, pre-trained model parameters on Image-Net dataset are used. Hierarchical pruning gradually eliminates the connections, filter channels, and filters to simplify the network structure. The proposed pruning method is evaluated using the Messidor image dataset which is a public dataset for DR classification. Simulation results show that by applying the proposed simplification method, 35% of the feature maps are pruned resulting in only 1.89% accuracy drop. This simplification could make CNN suitable for implementation inside medical diagnostic devices.
引用
收藏
页码:970 / 973
页数:4
相关论文
共 50 条
  • [1] Deep Convolutional Neural Networks for Diabetic Retinopathy Classification
    Lian, Chunyan
    Liang, Yixiong
    Kang, Rui
    Xiang, Yao
    ICAIP 2018: 2018 THE 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN IMAGE PROCESSING, 2018, : 68 - 72
  • [2] Multiple Convolutional Neural Networks for Diabetic Retinopathy Classification
    Schweisthal, Brigitte
    Lascu, Mihaela
    2021 INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING (EHB 2021), 9TH EDITION, 2021,
  • [3] Automatic Classification of Diabetic Retinopathy based on Convolutional Neural Networks
    Zhang, Xingming
    Zhang, Wanwan
    Fang, Mingchao
    Xue, Jiale
    Wu, Lifeng
    2018 INTERNATIONAL CONFERENCE ON IMAGE AND VIDEO PROCESSING, AND ARTIFICIAL INTELLIGENCE, 2018, 10836
  • [4] Diabetic Retinopathy Stage Classification using Convolutional Neural Networks
    Wang, Xiaoliang
    Lu, Yongjin
    Wang, Yujuan
    Chen, Wei-Bang
    2018 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION (IRI), 2018, : 465 - 471
  • [5] Convolutional Neural Networks for Diabetic Retinopathy
    Pratt, Harry
    Coenen, Frans
    Broadbent, Deborah M.
    Harding, Simon P.
    Zheng, Yalin
    20TH CONFERENCE ON MEDICAL IMAGE UNDERSTANDING AND ANALYSIS (MIUA 2016), 2016, 90 : 200 - 205
  • [6] Deep convolutional neural networks for diabetic retinopathy detection by image classification
    Wan, Shaohua
    Liang, Yan
    Zhang, Yin
    COMPUTERS & ELECTRICAL ENGINEERING, 2018, 72 : 274 - 282
  • [7] Classification of Diabetic Retinopathy Grade Based on G-ENet Convolutional Neural Network Model Classification of Diabetic Retinopathy Grade Convolutional Neural Networks are Used to Solve the Problem of Diabetic Retinopathy Grade Classification
    Gu, Liping
    Li, Tongyan
    He, Jiyong
    PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING, EITCE 2023, 2023, : 1590 - 1594
  • [8] CONVOLUTIONAL NEURAL NETWORKS FOR DIABETIC RETINOPATHY DETECTION
    Patino-Perez, Darwin
    Armijos-Valarezo, Luis
    Choez-Acosta, Luis
    Burgos-Robalino, Freddy
    INGENIUS-REVISTA DE CIENCIA Y TECNOLOGIA, 2025, (33):
  • [9] Diabetic Retinopathy Classification Using CNN and Hybrid Deep Convolutional Neural Networks
    Yasashvini, R.
    Sarobin, Vergin Raja M.
    Panjanathan, Rukmani
    Jasmine, Graceline S.
    Anbarasi, Jani L.
    SYMMETRY-BASEL, 2022, 14 (09):
  • [10] Convolutional Neural Network for Classification of Diabetic Retinopathy Grade
    Alcala-Rmz, Vanessa
    Maeda-Gutierrez, Valeria
    Zanella-Calzada, Laura A.
    Valladares-Salgado, Adan
    Celaya-Padilla, Jose M.
    Galvan-Tejada, Carlos E.
    ADVANCES IN SOFT COMPUTING, MICAI 2020, PT I, 2020, 12468 : 104 - 118