The effects of dietary α-linolenic acid compared with docosahexaenoic acid on brain, retina, liver, and heart in the guinea pig

被引:102
作者
Abedin, L
Lien, EL
Vingrys, AJ
Sinclair, AJ
机构
[1] RMIT Univ, Dept Food Sci, Melbourne, Vic 3001, Australia
[2] RMIT Univ, Dept Optometry & Vis Sci, Parkville, Vic 3052, Australia
[3] Wyneth Nutrit Int, Philadelphia, PA USA
关键词
D O I
10.1007/s11745-999-0387-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The aim of this study was to compare two different strategies to elevate brain, retina, liver, and heart docosahexaenoic acid (DHA) levels in guinea pigs. First, we used an increasing dose of alpha-linolenic acid (ALA) relative to a constant linoleic acid (LA) intake, and second, we used two levels of dietary DHA provided in conjunction with dietary arachidonic acid (AA). The percentage DHA and AA of total phospholipids in retina, liver, and heart, and in the brain phosphatidylethanolamine and phosphatidylcholine was studied in female pigmented guinea pigs (3 wk old) fed one of five semisynthetic diets containing 10% (w/w) lipid for 12 wk. The LA content in the diets was constant (17% of total fatty acids), with the ALA content varying from 0.05% (diet SFO), to 1% (diet Mix), and to 7% (diet CNO). Two other diets (LCP1 and LCP3) had a constant LA/ALA ratio (17.5:1) but varied in the levels of dietary AA and DHA supplementation. Diet LCP1 was structured to closely replicate the principal long chain polyunsaturated fatty acids (PUFA) found in human breast milk and contained 0.9% AA and 0.6% DHA (% of total fatty acids) whereas diet LCP3 contained 2.7% AA and 1.8% DHA. At the end of the study, animals were sacrificed and tissues taken for fatty acid analyses. We found no significant effects of diets on the growth of guinea pigs. Diets containing ALA had profoundly different effects on tissue fatty acid compositions compared with diets which contained the long chain PU FA (DHA and AA). In the retina and brain phospholipids, high-ALA diets or dietary DHA supplementation produced moderate relative increases in DHA levels. There was no change in retinal or brain AA proportions following dietary AA supplementation, even at the highest level. This was in contrast to liver and heart where tissue DHA proportions were low and AA predominated. In these latter tissues, dietary ALA had little effect on tissue DHA proportions although the proportion of AA was slightly depressed at the highest dietary ALA intake, but dietary DHA and AA supplements led to large increases (up to 10-fold) in the proportions of these PUFA. Tissue uptake of dietary AA and DHA appeared maximal for the LCP1 diet(replicate of breast milk) in the heart. There were no significant changes in the plasma levels of 11-dehydrothromboxane B-2 (a thromboxane A(2) metabolite) for any diet. The data confirm that dietary ALA is less effective than dietary DHA supplementation (on a gram/gram basis) in increasing tissue DHA levels and that tissues vary greatly in their response to exogenous AA and DHA, with the levels of these long chain metabolites being most resistant to change in the retina and brain compared with liver and heart. Dietary DHA markedly increased tissue DHA proportions in both liver and heart, whereas the major effect of dietary AA was in the liver. Future studies of the effects of dietary DHA and AA supplementation should examine a variety of tissues rather than focusing only on neural tissue.
引用
收藏
页码:475 / 482
页数:8
相关论文
共 37 条
[1]   EFFECTS OF DIETARY LINOLENATE ON THE FATTY-ACID COMPOSITION OF BRAIN LIPIDS IN RATS [J].
ANDING, RH ;
HWANG, DH .
LIPIDS, 1986, 21 (11) :697-701
[2]   FORMULA ALPHA-LINOLENIC (18/3(N-3)) AND LINOLEIC (18/2(N-6)) ACID INFLUENCE NEONATAL PIGLET LIVER AND BRAIN SATURATED FATTY-ACIDS, AS WELL AS DOCOSAHEXAENOIC ACID (22/6(N-3)) [J].
ARBUCKLE, LD ;
RIOUX, FM ;
MACKINNON, MJ ;
INNIS, SM .
BIOCHIMICA ET BIOPHYSICA ACTA, 1992, 1125 (03) :262-267
[3]   MEMBRANE FATTY-ACIDS ASSOCIATED WITH ELECTRICAL RESPONSE IN VISUAL EXCITATION [J].
BENOLKEN, RM ;
ANDERSON, RE ;
WHEELER, TG .
SCIENCE, 1973, 182 (4118) :1253-1254
[4]   Visual acuity and the essentiality of docosahexaenoic acid and arachidonic acid in the diet of term infants [J].
Birch, EE ;
Hoffman, DR ;
Uauy, R ;
Birch, DG ;
Prestidge, C .
PEDIATRIC RESEARCH, 1998, 44 (02) :201-209
[5]   Comparison of vegetable and fish oil in the provision of N-3 polyunsaturated fatty acids for nervous tissue and selected organs [J].
Bourre, JME ;
Dumont, OL ;
Piciotti, MJ ;
Clement, ME ;
Durand, GA .
JOURNAL OF NUTRITIONAL BIOCHEMISTRY, 1997, 8 (08) :472-478
[6]   Interaction of n-3 long-chain polyunsaturated fatty acids with n-6 fatty acids in suckled rat pups [J].
Boyle, FG ;
Yuhas, RJ ;
Goldberg, K ;
Lien, EL .
LIPIDS, 1998, 33 (03) :243-250
[7]   Effect of long-chain n-3 fatty acid supplementation on visual acuity and growth of preterm infants with and without bronchopulmonary dysplasia [J].
Carlson, SE ;
Werkman, SH ;
Tolley, EA .
AMERICAN JOURNAL OF CLINICAL NUTRITION, 1996, 63 (05) :687-697
[8]   Assessment of the efficacious dose of arachidonic and docosahexaenoic acids in preterm infant formulas: Fatty acid composition of erythrocyte membrane lipids [J].
Clandinin, MT ;
VanAerde, JE ;
Parrott, A ;
Field, CJ ;
Euler, AR ;
Lien, EL .
PEDIATRIC RESEARCH, 1997, 42 (06) :819-825
[9]   DETERMINATION OF THE OPTIMAL RATIO OF LINOLEIC-ACID TO ALPHA-LINOLENIC ACID IN INFANT FORMULAS [J].
CLARK, KJ ;
MAKRIDES, M ;
NEUMANN, MA ;
GIBSON, RA .
JOURNAL OF PEDIATRICS, 1992, 120 (04) :S151-S158
[10]  
Connor W E, 1988, Prog Clin Biol Res, V282, P275