BRIDEMAID: An Hybrid Tool for Accurate Detection of Android Malware

被引:47
|
作者
Martinelli, Fabio [1 ]
Mercaldo, Francesco [1 ]
Saracino, Andrea [1 ]
机构
[1] CNR, Ist Inforrnat & Telemat, Pisa, Italy
基金
欧盟地平线“2020”;
关键词
D O I
10.1145/3052973.3055156
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents BRIDEMAID, a framework which exploits an approach static and dynamic for accurate detection of Android malware. The static analysis is based on n-grams matching, whilst the dynamic analysis is based on multi-level monitoring of device, app and user behavior. The framework has been tested against 2794 malicious apps reporting a detection accuracy of 99,7% and a negligible false positive rate, tested on a set of 10k genuine apps.
引用
收藏
页码:899 / 901
页数:3
相关论文
共 50 条
  • [21] Deep Android Malware Detection
    McLaughlin, Niall
    del Rincon, Jesus Martinez
    Kang, BooJoong
    Yerima, Suleiman
    Miller, Paul
    Sezer, Sakir
    Safaei, Yeganeh
    Trickel, Erik
    Zhao, Ziming
    Doup, Adam
    Ahn, Gail Joon
    PROCEEDINGS OF THE SEVENTH ACM CONFERENCE ON DATA AND APPLICATION SECURITY AND PRIVACY (CODASPY'17), 2017, : 301 - 308
  • [22] Detection of Repackaged Android Malware
    Shahriar, Hossain
    Clincy, Victor
    2014 9TH INTERNATIONAL CONFERENCE FOR INTERNET TECHNOLOGY AND SECURED TRANSACTIONS (ICITST), 2014, : 349 - 354
  • [23] Smart malware detection on Android
    Gheorghe, Laura
    Marin, Bogdan
    Gibson, Gary
    Mogosanu, Lucian
    Deaconescu, Razvan
    Voiculescu, Valentin-Gabriel
    Carabas, Mihai
    SECURITY AND COMMUNICATION NETWORKS, 2015, 8 (18) : 4254 - 4272
  • [24] TRENDS IN ANDROID MALWARE DETECTION
    Shaerpour, Kaveh
    Dehghantanha, Ali
    Mahmod, Ramlan
    JOURNAL OF DIGITAL FORENSICS SECURITY AND LAW, 2013, 8 (03) : 21 - 40
  • [25] Android malware detection model
    Yang H.
    Na Y.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2019, 46 (03): : 45 - 51
  • [26] Android Fragmentation in Malware Detection
    Long Nguyen-Vu
    Ahn, Jinung
    Jung, Souhwan
    COMPUTERS & SECURITY, 2019, 87
  • [27] Android Malware Detection Using Hybrid Analysis and Machine Learning Technique
    Yang, Fan
    Zhuang, Yi
    Wang, Jun
    CLOUD COMPUTING AND SECURITY, PT II, 2017, 10603 : 565 - 575
  • [28] Poster: Android Malware Detection using Hybrid Features and Machine Learning
    Kadir, Abdul
    Peddoju, Sateesh K.
    2024 IEEE 21ST INTERNATIONAL CONFERENCE ON MOBILE AD-HOC AND SMART SYSTEMS, MASS 2024, 2024, : 494 - 495
  • [29] Hybrid Android Malware Detection: A Review of Heuristic-Based Approach
    Yunmar, Rajif Agung
    Kusumawardani, Sri Suning
    Mohsen, Fadi
    IEEE ACCESS, 2024, 12 : 41255 - 41286
  • [30] On the Evaluation of the Machine Learning Based Hybrid Approach for Android Malware Detection
    Ratyal, Natasha Javed
    Khadam, Maryam
    Aleem, Muhammad
    2019 22ND IEEE INTERNATIONAL MULTI TOPIC CONFERENCE (INMIC), 2019, : 100 - 107