BRIDEMAID: An Hybrid Tool for Accurate Detection of Android Malware

被引:47
|
作者
Martinelli, Fabio [1 ]
Mercaldo, Francesco [1 ]
Saracino, Andrea [1 ]
机构
[1] CNR, Ist Inforrnat & Telemat, Pisa, Italy
基金
欧盟地平线“2020”;
关键词
D O I
10.1145/3052973.3055156
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents BRIDEMAID, a framework which exploits an approach static and dynamic for accurate detection of Android malware. The static analysis is based on n-grams matching, whilst the dynamic analysis is based on multi-level monitoring of device, app and user behavior. The framework has been tested against 2794 malicious apps reporting a detection accuracy of 99,7% and a negligible false positive rate, tested on a set of 10k genuine apps.
引用
收藏
页码:899 / 901
页数:3
相关论文
共 50 条
  • [1] MADLIRA: A Tool for Android Malware Detection
    Khanh Huu The Dam
    Touili, Tayssir
    ICISSP: PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY, 2021, : 670 - 675
  • [2] Andrana: Quick and Accurate Malware Detection for Android
    Bedford, Andrew
    Garvin, Sebastien
    Desharnais, Josee
    Tawbi, Nadia
    Ajakan, Hana
    Audet, Frederic
    Lebel, Bernard
    FOUNDATIONS AND PRACTICE OF SECURITY, FPS 2016, 2017, 10128 : 20 - 35
  • [3] A Hybrid Detection Method for Android Malware
    Fang, Qi
    Yang, Xiaohui
    Ji, Ce
    PROCEEDINGS OF 2019 IEEE 3RD INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2019), 2019, : 2127 - 2132
  • [4] PNSDroid: A Hybrid Approach for Detection of Android Malware
    Kandukuru, Satish
    Sharma, R. M.
    RECENT FINDINGS IN INTELLIGENT COMPUTING TECHNIQUES, VOL 3, 2018, 709 : 361 - 367
  • [5] HAAMD:Hybrid Analysis for Android Malware Detection
    Choudhary, Mahima
    Kishore, Brij
    2018 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI), 2018,
  • [6] A hybrid approach of mobile malware detection in Android
    Tong, Fei
    Yan, Zheng
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2017, 103 : 22 - 31
  • [7] Quick and Accurate Android Malware Detection Based on Sensitive APIs
    Zhao, Chunlei
    Zheng, Wenbai
    Gong, Liangyi
    Zhang, Mengzhe
    Wang, Chundong
    2018 IEEE INTERNATIONAL CONFERENCE ON SMART INTERNET OF THINGS (SMARTIOT 2018), 2018, : 143 - 148
  • [8] Towards Accurate Labeling of Android Apps for Reliable Malware Detection
    Salem, Aleieldin
    PROCEEDINGS OF THE ELEVENTH ACM CONFERENCE ON DATA AND APPLICATION SECURITY AND PRIVACY (CODASPY '21), 2021, : 269 - 280
  • [9] A Hybrid Deep Network Framework for Android Malware Detection
    Zhu, Hui-Juan
    Wang, Liang-Min
    Zhong, Sheng
    Li, Yang
    Sheng, Victor S.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (12) : 5558 - 5570
  • [10] DroidDetectMW: A Hybrid Intelligent Model for Android Malware Detection
    Taher, Fatma
    AlFandi, Omar
    Al-kfairy, Mousa
    Al Hamadi, Hussam
    Alrabaee, Saed
    APPLIED SCIENCES-BASEL, 2023, 13 (13):