Distributed source model for the full-wave electromagnetic simulation of nonlinear terahertz generation

被引:16
|
作者
Fumeaux, Christophe [1 ]
Lin, Hungyen [1 ]
Serita, Kazunori [2 ]
Withayachumnankul, Withawat [1 ]
Kaufmann, Thomas [1 ]
Tonouchi, Masayoshi [2 ]
Abbott, Derek [1 ]
机构
[1] Univ Adelaide, Sch Elect & Elect Engn, Adelaide, SA 5005, Australia
[2] Osaka Univ, Inst Laser Engn, Suita, Osaka 5650871, Japan
来源
OPTICS EXPRESS | 2012年 / 20卷 / 16期
基金
澳大利亚研究理事会;
关键词
OPTICAL RECTIFICATION; TIME-DOMAIN; MAXWELL EQUATIONS; RADIATION; APERTURES; GUIDES; MICROSCOPE; MEDIA;
D O I
10.1364/OE.20.018397
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The process of terahertz generation through optical rectification in a nonlinear crystal is modeled using discretized equivalent current sources. The equivalent terahertz sources are distributed in the active volume and computed based on a separately modeled near-infrared pump beam. This approach can be used to define an appropriate excitation for full-wave electromagnetic numerical simulations of the generated terahertz radiation. This enables predictive modeling of the near-field interactions of the terahertz beam with micro-structured samples, e. g. in a near-field time-resolved microscopy system. The distributed source model is described in detail, and an implementation in a particular full-wave simulation tool is presented. The numerical results are then validated through a series of measurements on square apertures. The general principle can be applied to other nonlinear processes with possible implementation in any full-wave numerical electromagnetic solver. (C) 2012 Optical Society of America
引用
收藏
页码:18397 / 18414
页数:18
相关论文
共 50 条
  • [31] ROBUST ALGORITHMS FOR THE CALCULATION OF FULL-WAVE ELECTROMAGNETIC SOLUTIONS
    EFRAT, I
    TISMENETSKY, M
    RUBIN, BJ
    WEBMAN, I
    JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 117 (01) : 163 - 170
  • [32] Electromagnetic Energy Harvesting Using Full-Wave Rectification
    Erkmen, Faruk
    Almoneef, Thamer S.
    Ramahi, Omar M.
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2017, 65 (05) : 1843 - 1851
  • [33] Parallel Processing Improvements for Full-Wave Electromagnetic Solvers
    Lee, Seung-Cheol
    Polstyanko, Sergey
    Soldo, Denis
    Commens, Matthew
    Vennam, Prakash
    Pytel, Steven G., Jr.
    2013 IEEE 22ND CONFERENCE ON ELECTRICAL PERFORMANCE OF ELECTRONIC PACKAGING AND SYSTEMS (EPEPS), 2013, : 35 - 38
  • [34] Full-Wave Electromagnetic Optimizations of Corrugated Metallic Sheets
    Altinoklu, Askin
    Karaosmanoglu, Bariscan
    Ergul, Ozgur
    2016 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, 2016, : 1325 - 1326
  • [35] Full-wave electromagnetic modes and hybridization in nanoparticle dimers
    Pascale, Mariano
    Miano, Giovanni
    Tricarico, Roberto
    Forestiere, Carlo
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [36] Full-wave Simulation of THz Photoconductive Antennas
    Pantoja, Mario F.
    Garcia, Salvador G.
    Moreno, Enrique
    Bretones, Amelia R.
    Martin, Rafael G.
    2014 39TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2014,
  • [37] Large-scale full-wave simulation
    Kapur, S
    Long, DE
    41ST DESIGN AUTOMATION CONFERENCE, PROCEEDINGS 2004, 2004, : 806 - 809
  • [38] Full-Wave Simulation of Contact-Nonlinearity-Induced Passive Intermodulation Using a Nonlinear Interface Boundary Model
    Zhao, Xiaolong
    He, Yongning
    Zhang, Anxue
    IEEE MICROWAVE AND WIRELESS TECHNOLOGY LETTERS, 2024, 34 (06): : 583 - 586
  • [39] Full-Wave Simulation of Propagation in Human Crowds
    Veljovic, Miroslav J.
    Olcan, Dragan I.
    Kolundzija, Branko M.
    2015 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION & USNC/URSI NATIONAL RADIO SCIENCE MEETING, 2015, : 286 - 287
  • [40] The full-wave simulation of printed phased array
    Kasyanov, AO
    5th International Conference on Antenna Theory and Techniques, Proceedings, 2005, : 238 - 241