Multi-wavelength Raman lidar, sun photometric and aircraft measurements in combination with inversion models for the estimation of the aerosol optical and physico-chemical properties over Athens, Greece

被引:29
作者
Mamouri, R. E. [1 ]
Papayannis, A. [1 ]
Amiridis, V. [2 ]
Mueller, D. [3 ,4 ]
Kokkalis, P. [1 ]
Rapsomanikis, S. [5 ]
Karageorgos, E. T. [5 ]
Tsaknakis, G. [1 ]
Nenes, A. [6 ,7 ]
Kazadzis, S. [8 ]
Remoundaki, E. [9 ]
机构
[1] Natl Tech Univ Athens, Dept Phys, Laser Remote Sensing Lab, Zografos, Greece
[2] Natl Observ Athens, Inst Space Applicat & Remote Sensing, Athens, Greece
[3] Leibniz Inst Tropospher Res, Leipzig, Germany
[4] GIST, Buk Gu, Gwangju, South Korea
[5] Democritus Univ Thrace, Dept Environm Engn, GR-67100 Xanthi, Greece
[6] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA
[7] Fdn Res & Technol Hellas, Inst Chem Engn & High Temp Chem Proc, Patras, Greece
[8] Natl Observ Athens, Inst Environm Res & Sustainable Dev, Athens, Greece
[9] Natl Tech Univ Athens, Sch Min & Met Engn, Zografos, Greece
关键词
MICROPHYSICAL PARTICLE PARAMETERS; SAHARAN DUST AEROSOLS; BACKSCATTER LIDAR; EARLINET PROJECT; REFRACTIVE-INDEX; LIGHT-ABSORPTION; EXTINCTION; REGULARIZATION; FRAMEWORK; URBAN;
D O I
10.5194/amt-5-1793-2012
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A novel procedure has been developed to retrieve, simultaneously, the optical, microphysical and chemical properties of tropospheric aerosols with a multi-wavelength Raman lidar system in the troposphere over an urban site (Athens, Greece: 37.9A degrees N, 23.6A degrees E, 200 m a.s.l.) using data obtained during the European Space Agency (ESA) THERMOPOLIS project, which took place between 15-31 July 2009 over the Greater Athens Area (GAA). We selected to apply our procedure for a case study of intense aerosol layers that occurred on 20-21 July 2009. The National Technical University of Athens (NTUA) EOLE 6-wavelength Raman lidar system has been used to provide the vertical profiles of the optical properties of aerosols (extinction and backscatter coefficients, lidar ratio) and the water vapor mixing ratio. An inversion algorithm was used to derive the mean aerosol microphysical properties (mean effective radius (r(eff)), single-scattering albedo omega) and mean complex refractive index (m)) at selected heights in the 2-3 km height region. We found that r(eff) was 0.14-0.4 (+/- 0.14) mu m, omega was 0.63-0.88 (+/- 0.08) (at 532 nm) and m ranged from 1.44 (+/- 0.10) + 0.01 (+/- 0.01)i to 1.55 (+/- 0.12) + 0.06 (+/- 0.02)i, in good agreement (only for the r(eff) values) with in situ aircraft measurements. The water vapor and temperature profiles were incorporated into the ISORROPIA II model to propose a possible in situ aerosol composition consistent with the retrieved m and omega values. The retrieved aerosol chemical composition in the 2-3 km height region gave a variable range of sulfate (0-60%) and organic carbon (OC) content (0-50%), although the OC content increased (up to 50%) and the sulfate content dropped (up to 30%) around 3 km height; the retrieved low omega value (0.63), indicates the presence of absorbing biomass burning smoke mixed with urban haze. Finally, the retrieved aerosol microphysical properties were compared with column-integrated sun photometer CIMEL data.
引用
收藏
页码:1793 / 1808
页数:16
相关论文
共 77 条
[1]   Optical and microphysical properties of fresh biomass burning aerosol retrieved by Raman lidar, and star-and sun-photometry [J].
Alados-Arboledas, L. ;
Mueller, D. ;
Guerrero-Rascado, J. L. ;
Navas-Guzman, F. ;
Perez-Ramirez, D. ;
Olmo, F. J. .
GEOPHYSICAL RESEARCH LETTERS, 2011, 38
[2]   Characterization of the atmospheric aerosol by combination of LIDAR and sun-photometry [J].
Alados-Arboledas, Lucas ;
Guerrero Rascado, Juan Luis ;
Lyamani, Hassan ;
Navas-Guzman, Franscisco ;
Olmo Reyes, Francisco Jose .
LIDAR TECHNOLOGIES, TECHNIQUES, AND MEASUREMENTS FOR ATMOSPHERIC REMOTE SENSING III, 2007, 6750
[3]   Optical characteristics of biomass burning aerosols over Southeastern Europe determined from UV-Raman lidar measurements [J].
Amiridis, V. ;
Balis, D. S. ;
Giannakaki, E. ;
Stohl, A. ;
Kazadzis, S. ;
Koukouli, M. E. ;
Zanis, P. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (07) :2431-2440
[4]  
[Anonymous], 2020, Gothenburg Protocol to reduce transboundary air pollution, DOI DOI 10.5860/CHOICE.44-4512
[5]  
[Anonymous], 2006, ATMOS CHEM PHYS
[6]   COMBINED RAMAN ELASTIC-BACKSCATTER LIDAR FOR VERTICAL PROFILING OF MOISTURE, AEROSOL EXTINCTION, BACKSCATTER, AND LIDAR RATIO [J].
ANSMANN, A ;
RIEBESELL, M ;
WANDINGER, U ;
WEITKAMP, C ;
VOSS, E ;
LAHMANN, W ;
MICHAELIS, W .
APPLIED PHYSICS B-PHOTOPHYSICS AND LASER CHEMISTRY, 1992, 55 (01) :18-28
[7]   Aerosol lidar intercomparison in the framework of the EARLINET project.: 2.: Aerosol backscatter algorithms [J].
Böckmann, C ;
Wandinger, U ;
Ansmann, A ;
Bösenberg, J ;
Amiridis, V ;
Boselli, A ;
Delaval, A ;
De Tomasi, F ;
Frioud, M ;
Grigorov, IV ;
Hågård, A ;
Horvat, M ;
Iarlori, M ;
Komguem, L ;
Kreipl, S ;
Larchêvque, G ;
Matthias, V ;
Papayannis, A ;
Pappalardo, G ;
Rocadenbosch, F ;
Rodrigues, JA ;
Schneider, J ;
Shcherbakov, V ;
Wiegner, M .
APPLIED OPTICS, 2004, 43 (04) :977-989
[8]   Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols [J].
Bond, TC ;
Anderson, TL ;
Campbell, D .
AEROSOL SCIENCE AND TECHNOLOGY, 1999, 30 (06) :582-600
[9]  
Bosenberg J., 2003, Final Report 348, P1
[10]  
Bosenberg J., 1997, 226 MPI, P1